

Allocating Address Space in a 32-bit
Processor

Summary
Application Note
AP0149 (v2.0) February 27, 2008

This application note provides detailed information on mapping memory and
peripherals into a 32-bit processor's address space.

An FPGA design incorporating a 32-bit processor will typically involve the connection of slave memory and peripheral devices –
to the processor’s External Memory and Peripheral I/O interfaces respectively. This is physical connection, the wiring of the
devices to the processor. At this point, the processor – and more importantly the embedded code therein – is 'unaware' of the
existence of such devices, with respect to its address space. These physical slave devices must now be mapped into specific
locations within that address space.

The 'memory map', as it is often called, is essentially the bridge between the hardware and software projects – the hardware
team allocating each of the various memory and peripheral devices their own chunk of the processor's address space, the
software team then writing their code to access the memory and peripherals at the given locations.

Address Space Mapping - Overview
Processor address space can be configured from within the FPGA project (both Memory and Peripheral I/O) or the Embedded
Software project (Memory only). In both cases, mapping can be achieved quickly by importing slave device information directly
from the relevant schematic sheet. Once imported, the mapping of devices can be ‘hand-crafted’ as required. With respect to
the Embedded Software project, you can also opt to automatically import dedicated memory mapping definitions directly from
the FPGA project upon compilation.
You can also generate .asm and/or .h files for the Embedded Software project, upon FPGA project compilation, providing a
means to quickly and efficiently address devices from within the embedded source code.

Figure 1 summarizes the key elements to defining processor address space in terms of memory and peripheral I/O and where
such elements can be defined.

AP0149 (v2.0) February 27, 2008 1

Allocating Address Space in a 32-bit Processor

Options for Embedded Project Schematic Document (*.SchDoc)

Figure 1. Configuring Processor Memory and Peripheral I/O.

A Word on Mapping Physical Memory...
When configuring processor memory, the physical memory devices are mapped into the processor’s address space – in the
Internal and External Memory ranges – but can also be further broken down into separate logical spaces (or sections) for
reference by and within the embedded source code. Figure 2 illustrates this concept of memory space allocation.

Figure 2. Allocating processor and physical device memory spaces.

Configure Peripheral
Dialog

Configure Processor Memory
Dialog

Configure Memory tab

Sections/Reserved
Areas tab

hardware.asm

hardware.h

Optional file generation upon compilation of FPGA
project

Optional import
upon compilation
of FPGA project Mapping of peripheral

devices into Processor
address space (Peripheral

I/O)

Mapping of physical memory
devices into Processor address

space (External and Internal
Memory)

Mapping of physical
memory devices into

Processor address space
(External and Internal

Memory)

Specification of logical
sections and/or reserved

areas of memory

FPGA PROJECT (*.PrjFpg) EMBEDDED PROJECT (*.PrjEmb)

2 AP0149 (v2.0) February 27, 2008

 Allocating Address Space in a 32-bit Processor

From left to right, Figure 2 shows:

• The predefined memory architecture of the 32-bit processor. The 4GB linear address space divided between Internal
Memory (16MB), External Memory and Peripheral I/O space (16MB). This architecture is static (i.e. cannot be changed by
the user)

• Physical memory spaces. In the example of Figure 2, there are four physical memory spaces – Internal Memory, Daughter
Board SRAM, NanoBoard SRAM and FPGA BRAM. The dotted lines indicate where in the processor’s address space these
physical devices are mapped, and the sizing of each

• Logical memory spaces, showing the mapping of specific sections within the embedded code to the physical device memory.

Mapping Physical Memory from within the FPGA Project
Typically, the required physical memory devices will be added to the design and wired to the processor's External Memory
interface accordingly, before mapping is performed. To illustrate, consider the circuitry of Figure 3.

Figure 3. Connection of physical memory devices to the 32-bit processor.

Here, physical memory on the NanoBoard and Daughter Board, as well as Block RAM within the target FPGA device, is
connected to the processor's External Memory interface. The processor in this case is a TSK3000A, but could just as easily be
swapped for any of the other 32-bit processors available in Altium Designer. Connection to the interface is made through use of
a configurable Wishbone Interconnect device (WB_INTERCON).

For more information on connecting physical memory devices to a processor, refer to the application note Connecting
Memory and Peripheral Devices to a 32-bit Processor.

From within the FPGA project, mapping of physical memory into the processor’s address space is performed using the
Configure Processor Memory dialog (Figure 4). Access this dialog by right-clicking on the symbol for the processor (in the
schematic) and choosing Configure Processor Memory from the context menu that appears. Alternatively, use the Configure
Processor Memory button available from the Component Properties dialog for the processor.

AP0149 (v2.0) February 27, 2008 3

Allocating Address Space in a 32-bit Processor

Figure 4. Configuring processor memory from within the FPGA project

The dialog is divided into two regions. The top region provides a visual summary of the memory devices that are currently
defined and mapped into the processor's address space – i.e. the processor's 'view' of the actual physical memories in the
design. The bottom region of the dialog provides a tabular listing of each of these defined memory devices.

Default memory devices are initially defined and mapped. These will vary depending on the processor type being configured.
For the TSK3000A in our example circuit, the following devices are mapped by default:
• xrom - this ROM device is mapped into the processor's Internal Memory address range, in order to cater for storage of the

processor's embedded code. Starting at address 0000_0000h, it is sized to give 64KB of Internal Memory
• xram - this RAM device is mapped into the processor's External Memory address range in order to cater for the storage of

data. Starting at address 0100_0000h, it is sized to give 512KB of external memory.

Bear in mind that these are default memory mappings – the actual physical devices may not yet exist in the design or, if they do,
may not be identical in size.

Controls are also provided in the dialog for generating header files (Assembly or C) upon compilation of the FPGA project.
The dialog also provides a Configure Peripherals button – allowing you to quickly jump between memory and peripheral
configuration dialogs. Note that when using this facility, you will be prompted to confirm whether you wish to save the
configuration of the current dialog before proceeding to the other dialog.

Importing Device Information from the FPGA Project
Schematic
If you have connected your physical memory device(s) to the processor through a
Wishbone Interconnect, then the simplest way to make these devices 'known' to the
processor – and automatically have them mapped into the processor's address space –
is to use the Configure Processor Memory dialog's Import from Schematic feature.
Launched by clicking on the Import From Schematic button, the feature essentially
scans the FPGA design for configurable Wishbone Interconnect devices. All detected
interconnect devices, along with the slave devices associated to them, are presented in
the Choose Wishbone Items dialog (Figure 5).

Figure 5. Selecting memory devices to
import into processor address space.

4 AP0149 (v2.0) February 27, 2008

 Allocating Address Space in a 32-bit Processor

Prior to the dialog appearing, you will be given the choice of whether or not to delete any existing memory device definitions that
have been added. If you have not yet configured the processor memory, or want to start over again from a 'blank canvas' as it
were, then opting to delete here is the best course of action.

On the other hand, you may have already defined memories that you wish to keep. This can be the case when adding additional
physical memory to an already well-established design. In this case, it is better to not to delete the existing definitions, but rather
import just the addition(s).

Each slave memory device connected to an Interconnect is listed in the dialog, in terms of its identifier. This identifier is
assigned as part of the slave device's definition when configuring the Interconnect. The dialog offers the ability to import
selected devices or all devices associated to a given Interconnect, by clicking on the relevant entry in the Import to Bus column.
Choose the physical memory devices you wish to import and click OK.

Importing will:

• Add memory device definitions where they currently do not exist. The identifier of an Interconnect slave device – defined
when configuring the Interconnect – will be used to name the memory device definition.

• Update any existing memory device definitions, only if the identifier of the Interconnect
slave device matches that of an existing memory device definition.

Update to/preservation of existing
memory device definitions, will only
be possible where you have opted to
not delete the existing configuration
before importing.

• Preserve exisiting memory device definitions whose identifiers do not match those of the
Interconnect slave devices being imported – leaving hand-crafted definitions untouched.

Only the internal memory defined for the processor and physical memory devices
connected to the processor via a Wishbone Interconnect device will be imported using the Import from Schematic feature. If
a memory device is connected directly to the processor's External Memory interface (via the appropriately configured
memory controller and any additional wiring), it will not be imported and mapped.

Figure 6 illustrates an example of this mapping based on the example schematic circuitry of Figure 3. The default memory
definitions have been deleted prior to import.

Figure 6. Defining memory devices automatically by importing from the schematic.

If you do not wish to import any devices, simply click on the Skip button (in the Choose Wishbone Items dialog) – only the
definition of the processor's internal memory will be imported.

AP0149 (v2.0) February 27, 2008 5

Allocating Address Space in a 32-bit Processor

Managing Memory Device Definitions
Importing from the FPGA project schematic will define
memories from the processor's perspective that are
exactly in-line with the physical memory devices placed
and wired-up on the schematic sheet. Once imported,
you may well want to hand-craft how the processor
really 'sees' these memories. For example, you may
want to specify a single physical memory device in the
design to be seen as several memory devices by the
processor – essentially 'carving up' the address range
of the true physical device into sub-ranges.

The identifier used must not
contain any spaces.

The memory device definitions
are stored as part of the
processor component.

New memory device definitions may be added, or
existing ones modified or deleted, using the available
commands on the right-click menu for the Configure
Processor Memory dialog. An existing memory device
can also be modified with respect to its definition by
double-clicking on its corresponding entry in the list
section of the dialog, or by double-clicking on its 'block'
in the graphical display. The associated Processor
Memory Definition dialog will appear (Figure 7).

The dialog enables you to accurately define the memory
device in terms of its size and base address –
specifying where in the processor's address space it is
to be mapped. You can specify these values using decimal or Hex notation (e.g. 10000, 0x10000, 1k, 64k, 1M).

Figure 7. Defining a mapped physical memory device.

The Name field allows you to define a unique identifier for the device. The identifier for each
memory device will be used when generating header files for inclusion into the Embedded Software
project (see the section Generating Header Files for the Embedded Software Project). The
identifiers will also be used to uniquely identify the corresponding output HEX files.
The Type region of the dialog allows you to set the type and relative speed of the memory device. The memory type can be
either ROM or RAM (volatile or non-volatile). Six speed settings are available to choose from, ranging from 0 (fastest) to 5
(slowest). The Linker uses the speed settings for all defined memories in order to best optimize the overall performance and
efficiency of the code.

How the processor’s memory address space is allocated to the various physical memory devices in
a design ultimately depends on the function of the physical memory device and individual design
requirements. All but one physical memory device will be mapped into the processor’s External
Memory address range. The exception is the Dual port FPGA Block RAM used to implement the
processor’s internal memory. This will be mapped into the processor's Internal Memory address
range. This will always be mapped starting at the base address of 0000_0000h. The processor’s Internal Memory address
range is 16MB. The actual size of the physical RAM mapped into this range will be driven by how much physical BRAM is
available in the target FPGA device. This is typically between 4KB and 1MB.

6 AP0149 (v2.0) February 27, 2008

 Allocating Address Space in a 32-bit Processor

Mapping Physical Memory from within the Embedded Project
From within the Embedded Software project, mapping of physical memory into the processor’s address space is performed from
the Configure Memory tab of the Options for Embedded Project dialog (Figure 8). Access this dialog by right-clicking on the
project’s entry in the Projects panel and choosing Project Options from the context menu that appears.

Figure 8. Configuring processor memory from within the Embedded Software project

Controls for memory device definition are similar to those found in the Configure Processor Memory dialog when configuring
memory within the FPGA project. Use the right-click menu to access commands for adding new memory definitions, or for
editing/deleting existing definitions.

It is quite common for the Embedded software to be developed in parallel with the FPGA design and, with the two not linked, the
Embedded Software Developer has no knowledge of the physical memory devices being placed by the FPGA Designer.
Typically, the Embedded Software Developer will make an educated guess as to the memories available and continue to
develop accordingly, and independently.

When the time comes to synchronize the two independently-developed projects – linking the Embedded project as a sub-project
of the FPGA project – the Embedded Software Developer simply imports the memory definitions for the processor, from the
FPGA design. This can be achieved in two ways:
• Manually – by using the Import From Schematic button. The memory definitions stored with the processor component are

imported directly from the FPGA design, provided that the design has been compiled.
• Automatically – by enabling the Automatically import when compiling FPGA project option. When the FPGA project is

compiled, the memory device definitions for the processor will automatically be passed to the linked embedded software
project.
If you are manually defining memory device definitions in the Configure Memory tab of the Options for Embedded Project
dialog, those definitions will be stored as part of the Embedded project. While the Auto-Import option is not enabled, the
dialog will always use the project's stored definitions. When the Auto-Import option is enabled (and the Embedded and
FPGA projects linked), these project-based definitions will be by-passed, in favor of those definitions stored as part of the
processor component in the FPGA design.

AP0149 (v2.0) February 27, 2008 7

Allocating Address Space in a 32-bit Processor

Sections and Reserved Areas
Once the view of the physical memory devices has been defined from the processor's perspective, it is then possible to further
sub-divide these into logical sections. This allows the embedded software tools to place different parts of the software
application:

• into different physical memory devices and

• into different locations within a single physical memory device.

These named "sections” can then be referenced from assembler and C source code, to enable code and data to be placed at
certain memory locations. This allows for fine control over how the program is located or uses memory.

As well as defining areas in which to place code
‘sections’, you can also specify areas of memory
that are off-limits to the Linker – reserved areas in
which code cannot be placed (analogous to the use
of keepouts from a physical board-level
perspective).

Sections and reserved areas are defined and
managed from the Sections/Reserved Areas tab
of the Options for Embedded Project dialog (Figure
9). Access this dialog by right-clicking on the
project’s entry in the Projects panel and choosing
Project Options from the context menu that
appears. This tab can be also accessed directly
from the Component Properties dialog for the
processor, from within the FPGA design.

Figure 9. Defining Sections and Reserved Areas as part of Embedded Project
options.

Controls are provided, both in terms of buttons and a right-click menu, to add new Section and/or Reserved Area definitions, or
edit/delete existing ones.

Sections
Click the Add Section button within the Sections/Reserved Areas tab to access the Section dialog (Figure 10).

Figure 10. Defining a section within processor address space.

Use the Name region of the dialog to reference the required section defined in the source code. For example, if the source code
is written in assembly code (*.asm) and the following section is defined:

8 AP0149 (v2.0) February 27, 2008

 Allocating Address Space in a 32-bit Processor

.section.text.shiftcontrol, at(0x02000000)

.

.

Code Statements

.

.

.endsec

then the name specified in the Section dialog in order to reference this section definition would be .text.shiftcontrol.

The Location region allows you to specify where in the processor's address space the section is to be located. Simply enter a
base address for the section – the size will be automatically allocated. You can specify the location using decimal or Hex
notation (e.g. 10000, 0x10000, 1k, 64k, 1M). Alternatively, you can specify the location as a specific memory, in the format
mem:memname.

The Fill Bit Pattern region allows you to specify a value to be used to initialize the empty spaces at the end of the section, as a
result of MAU alignment. Leaving this field empty will:

• Fill the empty spaces with zeros if the section is located in ROM

• Leave the empty spaces uninitialized, if the section is located in RAM.
Use the Notes section to add any comments, such as the purpose for the section, when it was added, who it was added by, etc.

Reserved Areas
Click the Add Reserved Area button within the Sections/Reserved Areas tab to access the Reserved Area dialog (Figure 11).

Figure 11. Defining a Reserved Area within processor address space.

The Location region allows you to specify where in the processor's address space the reserved area is to be located. Simply
enter a base address for the area, using decimal or Hex notation (e.g. 10000, 0x10000, 1k, 64k, 1M).

The Size region of the dialog enables you to specify how much memory should be reserved using this area definition. Enter the
value as required – again decimal or Hex notation can be used (e.g. 10000, 0x10000, 1k, 64k, 1M).

Use the Fill Bit Pattern region to specify a value with which to initialize the reserved area, if required.

Use the Notes section to add any comments, such as when the area was added, who it was added by, etc.

AP0149 (v2.0) February 27, 2008 9

Allocating Address Space in a 32-bit Processor

Configuring Processor Peripheral I/O
Typically, the required peripheral devices will be added to the design and wired to the processor's Peripheral I/O interface
accordingly, before mapping is performed. To illustrate, consider the circuitry of Figure 12.

Figure 12. Connection of peripheral I/O devices to the 32-bit processor.

Here, three configurable Wishbone port devices (configured with 8-, 16- and 32-bit data widths respectively) have been
connected to a TSK3000A 32-bit processor. Connection to the processor's External Peripheral I/O interface is made through a
configurable Wishbone Interconnect device (WB_INTERCON).

For more information on connecting peripheral I/O devices to a processor, refer to the application note Connecting Memory
and Peripheral Devices to a 32-bit Processor.

Mapping of slave peripheral I/O devices into the processor’s address space is performed only from within the FPGA project,
using the Configure Peripheral dialog (Figure 13). Access this dialog by right-clicking on the symbol for the processor (in the
schematic) and choosing Configure Processor Peripheral from the context menu that appears. Alternatively, use the
Configure Processor Peripheral button available from the Component Properties dialog for the processor.

10 AP0149 (v2.0) February 27, 2008

 Allocating Address Space in a 32-bit Processor

Figure 13. Mapping peripheral devices into processor memory address space

The dialog is divided into two regions. The top region provides a visual summary of the peripheral devices that are currently
defined and mapped into the processor's address space – i.e. the processor's 'view' of the actual peripherals in the design. The
bottom region of the dialog provides a tabular listing of each of these defined peripheral devices.

Controls are also provided in the dialog for generating header files (Assembly or C) upon compilation of the FPGA project.
The dialog also provides a Configure Memory button – allowing you to quickly jump between peripheral and memory
configuration dialogs. Note that when using this facility, you will be prompted to confirm whether you wish to save the
configuration of the current dialog before proceeding to the other dialog.

Importing Device Information from the FPGA Project Schematic
If you have connected your slave peripheral device(s) to the processor through a Wishbone Interconnect, then the simplest way
to make these devices 'known' to the processor – and automatically have them mapped into the processor's address space – is
to use the Configure Peripheral dialog's Import from Schematic feature.
Launched by clicking on the Import From Schematic button, the feature essentially
scans the FPGA design for configurable Wishbone Interconnect devices. All detected
interconnect devices, along with the slave devices associated to them, are presented
in the Choose Wishbone Items dialog (Figure 14).

Prior to the dialog appearing, you will be given the choice of whether or not to delete
any existing peripheral device definitions that have been added. If you have not yet
configured the processor I/O space, or want to start over again from a 'blank canvas'
as it were, then opting to delete here is the best course of action.

On the other hand, you may have already defined peripherals that you wish to keep.
This can be the case when adding additional peripheral devices to an already well-
established design. In this case, it is better to not to delete the existing definitions, but
rather import just the addition(s).

Each slave peripheral device connected to an Interconnect is listed in the dialog, in
terms of its identifier. This identifier is assigned as part of the slave device's definition
when configuring the Interconnect. The dialog offers the ability to import selected
devices or all devices associated to a given Interconnect, by clicking on the relevant entry in the Import to Bus column. Choose
the peripheral devices you wish to import and click OK.

Figure 14. Selecting peripheral devices to
import into processor address space.

Importing will:

AP0149 (v2.0) February 27, 2008 11

Allocating Address Space in a 32-bit Processor

• Add peripheral device definitions where they currently do not exist. The identifier of an Interconnect slave device – defined
when configuring the Interconnect – will be used to name the peripheral device definition.

• Update any existing peripheral device definitions, only if the identifier of the Interconnect
slave device matches that of an existing peripheral device definition. Update to/preservation of existing

peripheral definitions, will only be
possible where you have opted to
not delete the existing configuration
before importing.

• Preserve exisiting peripheral device definitions whose identifiers do not match those of the
Interconnect slave devices being imported – leaving hand-crafted definitions untouched.

Only peripheral devices connected to the processor via a Wishbone Interconnect device will
be imported using the Import From Schematic feature. If a single peripheral device is
connected directly to the processor's Peripheral I/O interface, it will not be imported and mapped. In this case, you will need
to manually add a definition for the device.

Figure 15 illustrates an example of this mapping based on the example schematic circuitry of Figure 12.

Figure 15. Defining peripheral devices automatically by importing from the schematic.

If you do not wish to import any Interconnect-related devices, simply click on the Skip button (in the Choose Wishbone Items
dialog).

Managing Peripheral Device Definitions
New peripheral device definitions may be added, or existing ones modified or deleted, using the available commands on the
right-click menu for the Configure Peripheral dialog. An existing peripheral device can also be modified with respect to its
definition by double-clicking on its corresponding entry in the list section of the dialog, or by double-clicking on its 'block' in the
graphical display. The associated Peripheral Device dialog will appear (Figure 16).

12 AP0149 (v2.0) February 27, 2008

 Allocating Address Space in a 32-bit Processor

The dialog enables you to accurately define the
peripheral device in terms of its size and base address –
specifying where in the processor's address space it is
to be mapped. You can specify these values using
decimal or Hex notation (e.g. 10000, 0x10000, 1k, 64k,
1M).

The dialog enables you to accurately define the
peripheral device in terms of its size and base address –
specifying where in the processor's address space it is
to be mapped. You can specify these values using
decimal or Hex notation (e.g. 10000, 0x10000, 1k, 64k,
1M).

The Name field allows you to define a unique identifier
for the device. The identifier for each peripheral device
will be used when generating header files for inclusion
into the Embedded Software project (see next section).
It is important to note that the identifier used must not
contain spaces.

The Name field allows you to define a unique identifier
for the device. The identifier for each peripheral device
will be used when generating header files for inclusion
into the Embedded Software project (see next section).
It is important to note that the identifier used must not
contain spaces.

The Type region allows you to specify the type of
peripheral. Choose between the following options:
The Type region allows you to specify the type of
peripheral. Choose between the following options:
• Peripheral – standard peripheral device. • Peripheral – standard peripheral device.

• Peripheral ASP – a peripheral whose functionality is
described in the Embedded Software project.

• Peripheral ASP – a peripheral whose functionality is
described in the Embedded Software project.

The Interrupts region of the dialog allows you to assign
the required interrupt lines to the slave device. For
devices that generate multiple interrupts, assignment is
made by entering a comma-separated list.

The Interrupts region of the dialog allows you to assign
the required interrupt lines to the slave device. For
devices that generate multiple interrupts, assignment is
made by entering a comma-separated list.

 Figure 16. Defining a mapped peripheral I/O device.

Generating Header Files for the Embedded Software Project Generating Header Files for the Embedded Software Project
When mapping slave memory and peripheral I/O devices to the processor’s address space from within
the FPGA project, the Configure Processor Memory and Configure Peripheral dialogs provide two
options for passing the memory and peripheral definition information to the Embedded Software project:

Enabling or disabling an
option in one dialog will
automatically
enable/disable the
corresponding option in
the other dialog.

• hardware.asm (Assembly File)

• hardware.h (C Header File)

The option you choose will depend on whether the embedded source code is written in Assembly or C.
In each case, when the FPGA project is compiled, the chosen definition file will be created and added to the Embedded Project.

A header file essentially provides keyword substitution. The Embedded Software designer can simply enter a definition into the
code, which, through the header file, will be substituted with the required information at compile time. It is far easier to remember
and use identifiers for device addresses and sizes, rather than the hexadecimal representations themselves.

For each mapped memory and peripheral device, the file will contain the following definitions:
• The device's base address. The name for this entry will appear in the form Base_DeviceIdentifier (e.g.

Base_EMAC32).

• The device's size. The name for this entry will appear in the form Size_DeviceIdentifier (e.g.
Size_EMAC32).

DeviceIdentifier is
the unique name
assigned to the memory
or peripheral device as
part of its definition when
mapping.

For those peripheral devices that generate interrupts to the processor, the corresponding interrupt
definitions will also be listed. The name for an interrupt entry will be of the form:
Intr_DeviceIdentifier_InterruptIndex

where InterruptIndex is an alpha suffix (A, B, C, etc) to distinguish between multiple interrupts from
the same device. Consider for example a BT656 Video Capture Controller, with the identifier Video, and which generates two
interrupts to the host 32-bit processor. The interrupt name entries for this device in a generated header file would be:
Intr_Video_A

Intr_Video_B

Figure 17 shows an example of two generated header files – one C, the other Assembly.

AP0149 (v2.0) February 27, 2008 13

Allocating Address Space in a 32-bit Processor

Figure 17. Example of generated hardware definition files for use by the embedded software.

Revision History

Date Version No. Revision

14-Jul-2006 1.0 Initial release

27-Feb-2008 2.0 Updated for Altium Designer Summer 08

Software, hardware, documentation and related materials:

Copyright © 2008 Altium Limited.

All rights reserved. You are permitted to print this document provided that (1) the use of such is for personal use only and will not be copied or
posted on any network computer or broadcast in any media, and (2) no modifications of the document is made. Unauthorized duplication, in
whole or part, of this document by any means, mechanical or electronic, including translation into another language, except for brief excerpts in
published reviews, is prohibited without the express written permission of Altium Limited. Unauthorized duplication of this work may also be
prohibited by local statute. Violators may be subject to both criminal and civil penalties, including fines and/or imprisonment. Altium, Altium
Designer, Board Insight, Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk, P-CAD, SimCode, Situs, TASKING, and Topological
Autorouting and their respective logos are trademarks or registered trademarks of Altium Limited or its subsidiaries. All other registered or
unregistered trademarks referenced herein are the property of their respective owners and no trademark rights to the same are claimed.

14 AP0149 (v2.0) February 27, 2008

	Address Space Mapping - Overview
	A Word on Mapping Physical Memory...

	Mapping Physical Memory from within the FPGA Project
	Importing Device Information from the FPGA Project Schematic
	 Managing Memory Device Definitions

	 Mapping Physical Memory from within the Embedded Project
	Sections and Reserved Areas
	Sections
	Reserved Areas

	 Configuring Processor Peripheral I/O
	Importing Device Information from the FPGA Project Schematic
	Managing Peripheral Device Definitions

	Generating Header Files for the Embedded Software Project
	Revision History

