
C-to-Hardware Compiler User
Manual

GU0122 May 19, 2008

C-to-Hardware Compiler User Manual

Copyright © 2008 Altium Limited. All Rights Reserved.

The material provided with this notice is subject to various forms of national and international intellectual property
protection, including but not limited to copyright protection.You have been granted a non-exclusive license to use
such material for the purposes stated in the end-user license agreement governing its use. In no event shall you reverse
engineer, decompile, duplicate, distribute, create derivative works from or in any way exploit the material licensed to
you except as expressly permitted by the governing agreement. Failure to abide by such restrictions may result in
severe civil and criminal penalties, including but not limited to fines and imprisonment. Provided, however, that you
are permitted to make one archival copy of said materials for back up purposes only, which archival copy may be
accessed and used only in the event that the original copy of the materials is inoperable. Altium, Altium Designer,
Board Insight, DXP, Innovation Station, LiveDesign, NanoBoard, NanoTalk, OpenBus, P-CAD, SimCode, Situs,
TASKING, and Topological Autorouting and their respective logos are trademarks or registered trademarks of Altium
Limited or its subsidiaries. All other registered or unregistered trademarks referenced herein are the property of their
respective owners and no trademark rights to the same are claimed.

Table of Contents
1. Introduction .. 1

1.1. Manual Purpose and Structure ... 1
1.1.1. Required Knowledge to use the CHC Compiler ... 1
1.1.2. Suggested Reading ... 1

1.2. Introduction to C-to-Hardware Compilation ... 1
1.2.1. Todays FPGAs ... 1
1.2.2. CHC Programming Paradigm .. 2
1.2.3. Benefits of the CHC Compiler .. 2
1.2.4. What can you expect from CHC compiler? ... 3

1.3. Toolset Overview ... 4
1.3.1. Compiling to Hardware ... 5
1.3.2. Hardware Assembly (HASM) and Assembling ... 6
1.3.3. Linking & Locating .. 7
1.3.4. HDL generation .. 7

2. Parallelism ... 9
2.1. Dependencies ... 10

2.1.1. Control Dependencies .. 10
2.1.2. Data Dependencies ... 11

2.2. The Memory System .. 14
3. C Language Implementation ... 17

3.1. Data Types ... 18
3.2. Predefined Preprocessor Macros .. 19
3.3. Pragmas to Control the Compiler .. 21
3.4. Function and Symbol Qualifiers .. 25

3.4.1. Compiling to Hardware ... 25
3.4.2. Inlining Functions: inline / __noinline ... 29

3.5. Memory and Memory Qualifiers ... 30
3.5.1. Introduction .. 30
3.5.2. Storage Class Specifier: __rtl_alloc ... 31
3.5.3. Memory Qualifier: __mem0 .. __mem9 .. 32
3.5.4. Placing a Data Object at an Absolute Address: __at() 34
3.5.5. Shared Memory .. 34

3.6. Libraries .. 36
4. Using the CHC Compiler .. 37

4.1. Invocation and Operating Modes ... 37
4.1.1. CHC Compiler Options * ... 38

4.2. Simulating the Compiler Output .. 39
4.3. Synthesizing the Compiler Output ... 40
4.4. How the Compiler Searches Include Files ... 40
4.5. How the Compiler Searches the C library ... 41
4.6. Rebuilding the C Library .. 41
4.7. Debugging the Generated Code ... 42
4.8. C Code Checking: MISRA-C .. 42
4.9. C Compiler Error Messages ... 43

5. Libraries ... 45
5.1. Introduction .. 45
5.2. Library Functions ... 45

5.2.1. assert.h ... 45

iii

5.2.2. complex.h .. 45
5.2.3. ctype.h and wctype.h ... 47
5.2.4. errno.h .. 48
5.2.5. fcntl.h ... 49
5.2.6. fenv.h .. 49
5.2.7. float.h ... 50
5.2.8. inttypes.h and stdint.h .. 50
5.2.9. io.h ... 51
5.2.10. iso646.h .. 51
5.2.11. limits.h .. 51
5.2.12. locale.h ... 51
5.2.13. malloc.h ... 52
5.2.14. math.h and tgmath.h .. 52
5.2.15. setjmp.h .. 57
5.2.16. signal.h ... 57
5.2.17. stdarg.h ... 58
5.2.18. stdbool.h .. 58
5.2.19. stddef.h ... 58
5.2.20. stdint.h .. 58
5.2.21. stdio.h and wchar.h .. 59
5.2.22. stdlib.h and wchar.h ... 66
5.2.23. string.h and wchar.h ... 69
5.2.24. time.h and wchar.h ... 70
5.2.25. wchar.h ... 73
5.2.26. wctype.h .. 74

5.3. C Library Reentrancy ... 75
6. MISRA-C Rules ... 87

6.1. MISRA-C:1998 .. 87
6.2. MISRA-C:2004 .. 91

7. Glossary ... 101

iv

C-to-Hardware Compiler User Manual

Chapter 1. Introduction
1.1. Manual Purpose and Structure

The purpose of this manual is to provide detailed information on using the C-to-Hardware (CHC) Compiler
in Altium Designer.

This manual describes the hardware compiler functionality in detail. All this is intended to help you make
good design choices when creating your ultimate FPGA design.

1.1.1. Required Knowledge to use the CHC Compiler

Familiarity with the C programming language is essential. Experience with optimizing your code for a
given target processor architecture helps to decide which code fragments would probably benefit most
from compilation to hardware. Knowledge about hardware design languages is not required.

After compilation, the generated HDL file must be integrated with the rest of the hardware design.
Subsequently the resulting design must be instantiated on the FPGA. In Altium Designer this process is
fully automated.

1.1.2. Suggested Reading

We suggest to read the following manuals as well. They provide an introduction to the C-to-Hardware
Compiler and to the Application Specific Processor which holds compiled hardware functions:

• TU0130 Getting Started with the C-to-Hardware Compiler

• CR0177 WB_ASP Configurable Application Specific Processor

You can find these documents in the ...\Help directory of Altium Designer's installation directory.You
can either access them from there directly, or locate and launch them from the lower region of the
Knowledge Center (From the Help menu, select Knowledge Center).You can then find the documents
by navigating to Embedded Processors and Software Development » Accelerating Processors with
C-to-Hardware.

1.2. Introduction to C-to-Hardware Compilation

1.2.1.Todays FPGAs

Today's low cost FPGA devices contain over one million logic gates, tens or hundreds of dedicated
functional units (such as multipliers) mega-bits of memory, and host soft processor cores that occupy
less than a few percent of the available logic gates. Electronic systems that employ the latest FPGA
technology can provide extremely high computational throughput, ride Moore's law curve, and adapt to
change.

To design and program systems that exploit the power offered by these devices is complex and challenging.
Three design paradigms are common for FPGA based system development: HDL based design, platform
based design, and algorithmic design. Each paradigm has its own strengths and weaknesses with respect
to quality, time, and costs of result.

1

1.2.2. CHC Programming Paradigm

The C-to-Hardware Compiler is an algorithmic design and implementation tool which reduces the cost
and lead time of the design cycle while maintaining quality of results.The C-to-Hardware Compiler accepts
standard untimed ISO-C source code as input. The C-to-Hardware compiler can either translate a C
source file to hardware or translate parts of the C source to hardware functions and the remaining parts
to an instruction sequence for a micro controller. In this latter case, the C-to-Hardware Compiler is used
in combination with one of Altium Designer's traditional embedded compilers to build a system with an
embedded processor core(s) that off-loads certain functions to hardware.With the function qualifier __rtl
in front of a function definition you tell the compiler to translate the function into a hardware function. This
hardware function can either be a callable 'function' (Application Specific Processor or: ASP) that interacts
with the embedded software, or it can be an independent module of FPGA logic (a C code symbol) with
input and output ports to connect it as a part into a larger FPGA design.

In order to do hardware-software co-design while not modifying any source code, these qualifiers can be
put into a qualifier file. In Altium Designer, you can select the functions for hardware compilation from
your embedded C source, or you can add a C code symbol to the FPGA sheet and program it. Altium
Designer then automatically creates the qualifier file using the information and settings from the FPGA
sheet.The compiler will produce a synthesizable Register Transfer Level (RTL) file. An RTL file describes
the electronic circuit. Synthesis tools translate this RTL to an electronic circuit that implements the function.

1.2.3. Benefits of the CHC Compiler

The benefits of C-to-Hardware translation are quite diverse and manifest themselves at various levels in
the design process.

C-to-Hardware translation technology unites the disparate domains of system, software and hardware
engineering. System designs expressed in C can be instantly translated into Register Transfer Level
(RTL) descriptions enabling an early exploration of the design space to find an optimal software/hardware
partitioning. Design decisions at this level usually have significant impact on product costs and performance.

Near the end of the development cycle, software engineers have few options to improve system
performance. Rewriting code in assembly or implementing more efficient algorithms is time consuming
and costly. C-to-Hardware compilation provides the software engineer with an automated method to
off-load time critical software functions to hardware without having to redesign/rewrite any source code.
Off-loading performance critical functions to hardware may also enable you to use a processor core that
costs less and/or runs at a lower frequency, potentially reducing power consumption and electromagnetic
interference.

Replacing a traditional HDL based hardware design flow with a C-based design flow can result in a steep
reduction in development costs and/or time-to-market. RTL produced by the C compiler is 'correct by
construction'; time consuming simulation sessions to track down errors in handwritten RTL becomes a
thing of the past. Whether these benefits materialize, depends on the type of hardware that is designed.

Hardware components implementing computational complex algorithms can be efficiently described in
C, and the quality of the compiler generated RTL approaches the quality of handwritten code. For
demanding applications where hand optimized RTL is required, C-to-Hardware translation is still an
efficient tool to analyze the performance of different micro-architectures before committing to one and
implementing it in a hardware design language.

2

C-to-Hardware Compiler User Manual

C-based design is not always a replacement for HDL-based design. Hardware components that
are modeled in the structural and/or geometric domain are not easily described in, nor efficiently
inferred from, the C language.

Nowadays, computational intensive designs are still implemented using DSP processor cores, whereas
an FPGA would outperform the DSP in terms of throughput and costs. Microcontrollers typically offer one
execution pipeline, and DSPs up to eight. Modern FPGA's on the other hand, offer virtually unlimited
computational resources that can execute in parallel. Since the instruction fetch and decode steps become
superfluous and do not appear when an algorithm is implemented in hardware, all available memory
bandwidth is available for data access. Such dedicated hardware created by the CHC compiler may
outperform traditional microcontrollers and DSPs by orders of magnitude. However, the FPGA design
flow is often considered as immature, complex and too risky to use.The CHC compiler solves this problem
by offering a traditional embedded/DSP C-based design flow to develop the FPGA circuitry.

Replacing the hardware oriented FPGA design flow with a software design flow broadens the community
that could design ASIC-like technology significantly. It particularly lowers the entry barriers for small and
mid-sized companies to use advanced FPGA technology.

1.2.4. What can you expect from CHC compiler?

The CHC compiler is designed to be used together with Altium Designer's traditional embedded compilers
to create systems that contain both hardware and software. In addition, it can be used to create FPGA
logic from a C source. Such module of FPGA logic (a C code symbol) will be part of the larger FPGA
design and does not directly interact with the embedded software.

In essence the CHC compiler is a high-optimizing general purpose C-to-gates compiler, extended with
facilities to easily interface the generated logic with a processor core.

Virtually all C programs can be converted to an electronic circuit by the CHC compiler. However, the
characteristics of the program ultimately determine whether the CHC compiler can create an efficient
hardware component or whether it is better to execute the program on a processor core.The CHC compiler
can only create a small and fast electronic circuit if the C source code is parallelizable, in such cases the
hardware executes many operations in parallel whereas a processor core would fetch and execute
instructions sequentially.

Graphics, signal processing , filter and encryption algorithms typically translate very well to hardware and
performance improves by orders of magnitude. For these types of algorithms FPGA implementations
outperform high-end DSP and RISC processor cores.

3

Introduction

1.3.Toolset Overview

The figure below shows the CHC toolset (right) and its relation to a regular embedded toolset (left). This
is the flow to create an Application Specific Processor (a combination of software and hardware functions).
For C code symbols (a hardware 'function' as a customized FPGA component specified in C language),
only the right part of the figure applies.

4

C-to-Hardware Compiler User Manual

Figure 1.1. CHC Toolset Flow

1.3.1. Compiling to Hardware

The C source files are submitted to the compiler of the CHC toolset and -if necessary- to the compiler of
a regular embedded toolset. The embedded toolset compiles the C sources to software, whereas the
hardware compiler compiles certain functions and data objects to hardware.

5

Introduction

For this, both compilers need to know which functions and/or data objects should be translated to hardware
and which should be translated to software. The compilers have two ways of knowing this:

• The compiler reads special qualifiers that you can use in the C source files to mark functions and/or
data objects for hardware compilation, or,

• the compiler reads a qualifier file which is a list of functions and their associated qualifiers. This file is
generated when you use the dialogs in Altium Designer to mark which functions and data objects should
be compiled to hardware.

The CHC compiler also reads a linker script language file (LSL file). An LSL file describes the target
architecture in terms of memory spaces and buses, information a linker/locator uses to locate software
and data sections. An embedded compiler does not need such an LSL file, but the CHC compiler does!

Because memory access is the weakest link in FPGA performance, the CHC compiler uses the information
in the LSL file to construct a high-performance memory system. To exploit the bandwidth, the compiler
tries to benefit from concurrent memory access wherever possible. For this, the CHC compiler needs to
know the available memories and their buses. The compiler uses this information to divide data objects
between these memories in such a way that it benefits the most from concurrent memory accesses.
Furthermore, the compiler calculates the maximum size needed for each memory and minimizes the
number of address lines needed for memory access in the final hardware assembly output.

The LSL files are generated by Altium Designer based on the schematic.

The result of the compilation phase are one or more hardware assembly files.

1.3.2. Hardware Assembly (HASM) and Assembling

Hardware Assembly, HASM in short, is a language for describing digital electronic circuits. It is the
hardware equivalent of a regular assembly language.

Typically you will not read or edit HASM files as they are processed automatically in the background when
you compile a project in Altium Designer. HASM files are the generated output from the hardware compiler
and are further transformed by the hardware assembler. A brief description of the HASM language may
however give you an understanding of the mechanisms for sharing data between code fragments that
are executed by a processor core, and code fragments that are instantiated in hardware.The mechanisms
to create, initialize and locate data sections are identical to the mechanisms used in traditional embedded
toolsets.

HASM Language

The HASM language defines a rigid and specialized execution model that suits the needs of a compilation
system that translates C into hardware description languages such as VHDL or Verilog. HASM is a higher
level language than VHDL and Verilog: a shorter notation for a restricted functionality. The syntax of the
language is derived from traditional assembly languages for processor cores that support instruction level
parallelism. The semantics of the language enable a system to be modeled in both the functional and
structural domain. The functional domain deals with basic operations such as addition and multiplication.
The structural domain deals with how the system is composed of interconnected subsystems.

Traditional assembly languages model a system in the functional domain only. In HASM, the structural
concepts are taken from VHDL. As a result, the translation of HASM to VHDL or Verilog is a straightforward
process.

6

C-to-Hardware Compiler User Manual

The central structural concepts in HASM are functions and components, which correspond with VHDL
entities, architectures and components.

The hardware assembler ashc converts the HASM language into relocatable object files (ELF format).
These relocatable object files are linked/located using the (multi-core) hardware linker lkhc.The relocatable
ELF object files are passed to the hardware linker lkhc.

1.3.3. Linking & Locating

In a traditional software build flow the linker concatenates text, data and bss sections, and the locator
places the sections at absolute addresses. When C is translated to hardware, the assemble, link and
locate processes are identical to assembling, linking and locating a traditional embedded project.

The CHC compiler requires all modules to be compiled simultaneously.The compiler creates data sections
in the same way a traditional embedded compiler does. The same is true for the linker lkhc which is
basically identical to a traditional linker of an embedded toolset.You can influence the locate process
using memory type specifiers and the __at() keyword.

See also Section 3.5, Memory and Memory Qualifiers .

1.3.4. HDL generation

The linked and located ELF file is transformed into a hardware design language (HDL). This is done by
the HDL generator hdlhc. The HDL generator can generate VHDL (extension .vhd) and/or Verilog
(extension .v). In Altium Designer, both formats can be generated (which might be handy when sharing
files with others). The VHDL file however, is passed to Altium Designer's synthesizer and subsequently
to the FPGA vendor's place-and-route tools which eventually create a bit file that can be loaded onto the
FPGA.

7

Introduction

8

C-to-Hardware Compiler User Manual

Chapter 2. Parallelism
Understanding Parallelism

This chapter is a brief introduction on writing software for high performance processing architectures.
Because a translation to hardware yields the best results if (many) instructions can be executed
simultaneously, it is necessary to have a good understanding of parallelism. The issues in this chapter
are independent of the execution environment: it is valid for multiple pipeline CHC but also for execution
environments like DSPs or RISC processors.

The term instruction is associated with traditional processor cores. It defines the action that is carried out
(for example: mul, div, add, …) and it’s operands (for example: an immediate value, a register name, or
a reference to a memory location). In this section we use the term operation to refer to the instructions
that are executed by the electronic circuit created by the CHC compiler. An operation defines the action
that is carried out (for example: mul, divide, add, …) as well as it’s operands.

The CHC compiler creates small and fast electronic circuits only if the C source is parallelizable. So you
need to understand the factors that inhibit parallelism so you can avoid them. Once operations are
performed concurrently, the bandwidth of memory system that feeds data to the functional units usually
becomes a bottleneck.You need to understand the issues that restrict memory bandwidth and the methods
to increase memory bandwidth.

Granularity

The term granularity is used to indicate the size of the computations that are being performed at the same
time. In the context of C-to-Hardware compilation we identify fine grained instruction-level parallelism
(instruction level) and coarse grained parallelism (at thread level and process level).

Fine grained instruction level parallelism is automatically detected and exploited by the CHC compiler.
Course grained parallelization is user-directed, you must explicitly specify the actions to be taken by the
compiler and run-time system in order to exploit thread level and process level parallelism.

This section deals with instruction-level parallelism.

Example

Consider the following code fragment:

for (int i=0; i<100; i++)
{
 a[i] = b[i] * 2;
}

This loop has plenty of parallelism. If the compiler could create an electronic circuit with 100 multipliers
where each multiplier accesses one member of array a and one member of b, then the loop (all 100
iterations) executes in 1 clock cycle. Whether the compiler can create such a circuit depends on the
available hardware resources. Modern FPGAs provide the required number of multipliers.

However, in this example the memory system limits the amount of parallelism. If each array element was
stored in a register, the compiler could construct a circuit that executes all multiplies in parallel, but normally

9

the array members are stored in memory. FPGAs provide multi-ported memories but the number of access
ports is commonly limited to two. As a result, only one member of a and one member of b can be accessed
in the same cycle. Parallelism increases if arrays a and b are stored in different dual ported memories.
In that case, two members of a and two members b are accessible within the same clock cycle.

The essence of this example is that array accesses in loops impose a high load on the memory system
which typically forms the bottleneck in the overall system performance.

2.1. Dependencies

In general, a C compiler translates the statements in your C program into series of low-level operations.
To maintain the semantics of the program, these operations must be executed in a particular sequence.
When operation A must occur before operation B we say that B depends on A, this relationship is called
a dependency.

A compiler creates a so called data dependency graph that shows all dependencies for a code fragment.
The data dependency graph defines the order in which operations must be executed. Dependencies
inhibit parallelism. It is a task for both the software engineer and the compiler to rearrange a program to
eliminate dependencies. Dependencies are commonly subdivided into control dependencies and data
dependencies.

• Control dependencies arise from the control flow in the program.

• Data-dependencies arise from the flow of data between operations and occur when two operations
(possibly) refer to identical storage locations (a register or a memory location).

Structural hazards (also known as resource dependencies) arise from the limited number of hardware
resources, such as functional units and memory ports. Structural hazards inhibit parallelism but do not
force a particular execution sequence.

2.1.1. Control Dependencies

A control dependency is a constraint that arises from the control flow of the application. The compiler
tries to eliminate control dependencies to increase the efficiency of the generated hardware circuit.

Consider the following code fragment:

/*s1*/ if (a < b) {
/*s2*/ c = d + e;
 } else {
/*s3*/ c = d * e;
 }

Statement s2 and s3 have a control dependency on s1.

The electronic circuit that the compiler could create for this example, executes the compare, the addition
and the multiply operations, in parallel. The output of the comparator switches a multiplexer that either
assigns the result of the addition or the multiplication to variable c.This optimization is called if-conversion.
The if-convertor replaces if-then-else constructs by predicated operations which can be more efficiently
implemented in hardware.

10

C-to-Hardware Compiler User Manual

Sometimes it is legal to remove predicates that are assigned as a result of an if-conversion. Consider the
next code fragment:

/*s1*/ if (a < b) {
/*s2*/ c = d * e;
/*s3*/ x = c;
 }

Assume variable c is not used in subsequent statements. Now the compiler can remove the control
dependency from s2 and schedule the multiply before or simultaneous with the compare.This optimization
is known as predicated operation promotion. The predicate on s3 cannot be removed.

As the examples above show, the CHC compiler is able to translate control flow constructions quite well
into efficient hardware.

2.1.2. Data Dependencies

A data dependency is a constraint that arises from the flow of data between statements/operations.

There are three varieties of data dependencies:

• flow, also called read-after-write (raw) dependency

• anti, also called write-after-read (war) dependency

• output, also called write-after-write (waw) dependency

The key problem with each of these dependencies is that the second statement cannot execute until the
first has completed.

Flow or Read-After-Write dependency

Read-after-write dependency occurs when an operation references or reads a value assigned or written
by a preceding operation:

/*s1*/ a = b + c;
/*s2*/ d = a + 1;

Anti or Write-After-Read dependency

Write-after-read dependency occurs when an operation assigns or writes a value that is used or read by
a preceding operation:

/*s1*/ a = b + c;
/*s2*/ b = e + f;

Output or Write-After-Write dependency

Write-after-write dependency occurs when an operation assigns or writes a value that is also assigned
by a preceding operation:

11

Parallelism

/*s1*/ a = b + c;
/*s2*/ a = d + e;

In some cases a compiler can remove anti (WAR) and output (WAW) dependencies.To do so, the compiler
allocates multiple storage locations for a variable. Consider the following fragment of C code and assume
that all identifiers represent scalar types with local scope.

/*s1*/ a = b + c;
/*s2*/ b = e + f;
/*s3*/ a = g + h;

When the compiler allocates different storage locations for the variable a assigned in s1 and variable a
assigned in s3, the semantics of the code fragment do not change but the output (WAW) dependency
between s1 and s3 is removed. When the compiler allocates different storage locations for the variable
b read by s1 and assigned by s2, the anti (WAR) dependency between s1 and s2 is removed! As a result,
all operations can execute concurrently.

2.1.2.1. Aliasing

Aliasing occurs when one storage location can be accessed in two or more ways. For example, in the C
language the address of a variable can be assigned to a pointer and as a result, the variable’s storage
location is accessible via both the variable and the pointer. The variable and the pointer are aliases.

The address a pointer points to is known at run-time but can often not be computed at compile time. In
such cases the compiler must assume that the pointer is an alias of all other variables. As a result all
operations in which the pointer is used depend on all other operations. These extra dependencies inhibit
parallelism.

Consider the following code fragments:

#define N 10
int a[N][N], b[N][N], d;
for (i=0; i<N; i++) {
 for (j=0; j<N; i++) {
 a[i][j] = a[i][j] + b[i][j] * d;
 }
}

This loop is parallelizable. The starting address and dimensions of the arrays are visible to the compiler,
so it knows that a[i][j] and b[i][j] are not aliases.

#define N 10
int *a[N], *b[N], d;
for (i=0; i<N; i++) {
 a[i] = (int *)malloc(N * sizeof(int));
 c[i] = (int *)malloc(N * sizeof(int));
}
for (i=0; i<N; i++) {
 for (j=0; j<N; i++) {
 a[i][j] = a[i][j] + b[i][j] * d;
 }
}

12

C-to-Hardware Compiler User Manual

Although the loop body is identical, it is not parallelizable. The compiler is not allowed to make any
assumptions about the pointer returned by malloc.Therefore the compiler cannot guarantee that a[i][j]
and b[i][j] are not aliases. As a result all loop iterations execute sequentially.

#define N 10
void function (int a[][N], int b[][N], int d)
{
 for (i=0; i<N; i++) {
 for (j=0; j<N; i++) {
 a[i][j] = a[i][j] + b[i][j] * d;
 }
 }
}

Whether this loop is parallelizable, depends on whether the compiler is able to deduce that a and b are
not aliases. If the function is not static (thus can be called from outside the module in which it is defined),
the compiler needs to analyze all modules to be able detect whether a and b alias. This global alias
analysis is a time consuming process.

2.1.2.2.The restrict Keyword

The type qualifier restrict is new in ISO C99. It serves as a “no alias” hint to the compiler and can
only be used to qualify pointers to objects or incomplete types. Adding the restrict keyword can result
in great speedups at both compile-time and run-time.

By definition, a restrict qualified pointer points to a storage location that can only be accessed via this
pointer; no other pointers or variables can refer to the same storage location.

The ISO C99 standard provides a precise mathematical definition of restrict, but here are some
common situations:

• A restrict pointer which is a function parameter, is assumed to be the only possible way to access
its object during the function’s execution. By changing the function prototype in the previous example
from:

function (int a[][N], int b[][N], int d)

to:

function (int a[restrict][N], int b[restrict][N], int d)

Alternative syntax:

function (int **restrict a, int **restrict b, int d)

The loop body becomes parallelizable, without relying on the results of global alias analysis.

• A file-scope pointer declared using restrict is assumed to be the only possible way to access the
object to which it refers. This may be an appropriate way to declare a pointer initialized by malloc at
run time.

13

Parallelism

extern int * restrict ptr_i;

void init (void)
{
 ptr_i = malloc(20 * sizeof(int));
}

2.1.2.3. Loop Carried Dependencies

The notion of data dependency is particularly important for loops where a single misplaced dependency
can force the loop to be run sequentially.

To execute a loop as fast as possible, the operations within the loop body as well as multiple iterations
of the loop should execute in parallel. Multiple iterations of the loop body can execute in parallel if there
are no data dependencies between the iterations.

A dependency may be loop-independent (i.e. independent of the loop(s) surrounding it), or loop-carried.
Loop-carried dependencies result from dependencies among statements that involve subscripted variables
which nest inside loops. The dependency relationships between subscripted variables become much
more complicated than for scalar variables, and are functions of the index variables, as well as of the
statements.

In the code fragment below the anti dependency caused by writing b[i][j] in s4 and reading b[i][j]
in s3 is loop-independent. The flow dependency of s4 on s3, arising from setting an element of a[] in s3
and s4’s use of it one iteration of the inner j loop later, is loop-carried, in particular carried by the inner
loop.

/*s1*/ for (int i=0; i<3; i++) {
/*s2*/ for (int j=0; j<4; j++) {
/*s3*/ a[i][j] = b[i][j] + c[i][j];
/*s4*/ b[i][j] = a[i][j-1] * d[i+1][j] + t;
 }
 }

Try to avoid loop-carried dependencies by restructuring your source code.

2.2.The Memory System

If many operations execute in parallel, the memory system should provide the necessary bandwidth to
feed all operations with data. Typically the performance of the memory system restricts overall system
performance. Especially if a processor core shares data with hardware functions, that shared memory
will likely be the system’s bottleneck.

Registers

Programmable hardware (FPGA's) offers a virtually unlimited amount of registers to store variables and
temporary results. Registers are the fastest accessible storage locations. All registers can be accessed
in parallel.

14

C-to-Hardware Compiler User Manual

FPGA memory

Modern FPGAs supply large quantities of configurable on-chip block-RAM and distributed RAM. The
characteristics of the on-chip RAM such as the number of access ports, the bit width and size of the RAMs
are configured when the bit-file is loaded into the FPGA. Variables stored in different or in multi-ported
RAMs can be accessed in parallel.

Memory latency

Memory latency is defined as the time it takes to retrieve data from memory after the data request.Typically
on-chip memory has a latency of one, which means that the data arrives in the clock cycle following the
request. The memory latency can also be variable; in that case a handshake signal is asserted once the
data becomes available.

If multiple components (processor core, hardware function or peripheral) share memory via a common
bus interface the memory latency will be variable. Variable latencies have a negative effect on system
performance, program execution halts until the handshake signal is asserted.

How the compiler uses registers and memory

The compiler tries to construct a high-performance memory system based on the characteristics of both
the source code and the targeted FPGA device.The FPGA device characteristics are defined in a resource
definition file and in an linker description language file (lsl file).

The compiler allocates variables whose address is not taken in registers.

Large data structures, arrays, and variables whose address is taken, are allocated in memory.

The compiler analyzes variable access and pointer dereference patterns. Based on this analysis the
variables and pointers are grouped in parallel accessible clusters. Data objects allocated in different
clusters can be accessed concurrently. Clusters that contain data that cannot be accessed from outside
the hardware block are mapped to either distributed RAM or to block-RAM. The compiler instantiates this
memory. If sufficient memory resources are available, each memory contains only one cluster, and the
most frequently accessed clusters are located in multi-ported memories. The remaining clusters are
located into a memory that is shared with the processor core’s address space.

How to improve the compiler's default allocation

Given the characteristics of the source code the compiler may not be able to construct an efficient memory
system. Aliasing may inhibit the instantiation of multiple parallel accessible memories.

The ISO standardization committee has introduced C language extensions to support multiple address
spaces. Named address spaces are implemented by memory type qualifiers in C declarations. These
qualifiers associate a variable with a specific address space. Named address space support can be
provided within the current C standards by the single addition of a memory type qualifier in variable
declarations. SeeSection 3.5, Memory and Memory Qualifiers for more information about memory type
qualifiers.

15

Parallelism

Scheduling and operation chaining

The main inputs for the compiler’s scheduler are the data dependency graph and the resource definition
file. The data dependency graph defines the order in which operations are allowed to be executed. The
resource definition file describes the available number of functional units and their latencies. Based upon
the latencies the compiler decides whether it can chain operations. If two operations are chained they
execute within the same cycle and the output of the first operation is the input for the second.

Consider the following code fragment:

/*s1*/ a = i * j;
/*s2*/ b = i + j;
/*s3*/ b = b << 2;

There is one dependency, statement s3 must execute after s2, the other statements may execute
concurrently.The latencies of the operations are commonly quite different. Assume the following latencies
are defined in the resource definition file: multiply 50, addition 30, and shift 5 time units. Notice that a shift
operation with a constant shift value consumes virtually zero time since there is no logic involved. Given
these latencies the shift operation can be chained with the addition and the chained operation executes
concurrently with the multiply.

Figure 2.1. Scheduling

16

C-to-Hardware Compiler User Manual

Chapter 3. C Language Implementation
This chapter describes the CHC specific features of the C language, including language extensions that
are not defined in ISO-C. The ISO-C standard defines the C language and the C libraries. The CHC
compiler supports the ISO-C language and provides additional features to program the special functions
of the target. The C library implementation is comparable to the C library of compilers for embedded
systems.

This chapter sometimes refers to CHC compiler options. Although it is rarely necessary to set
CHC compiler options by hand, in Section 4.1.1, CHC Compiler Options * it is explained how you
can access and set CHC compiler options in Altium Designer.

The following C language features implemented in the compiler deviate from the ISO-C standard:

• Function prototypes: function prototypes are mandatory instead of optional

• Hardware functions are not reentrant:

• Recursion is not possible: cycles in the call graph are not allowed

• Hardware functions cannot be called concurrently from multiple processes (for example by both the
main program and an interrupt handler)

• Data types: double precision floating point data can be treated as single precision float with the option
--no-double (-F)

• Type specifiers: _Complex and _Imaginary are not implemented

In addition to the standard C language, the compiler supports the following:

• Operating modes for ISO-C99, ISO-C90, and GNU gcc compatibility

• Keywords to specify which functions should be compiled to hardware

• Keywords to specify the calling convention and bus interface of the hardware functions

• Keywords to specify memory types for data

• Keywords to optimize the hardware output

• An attribute to locate data at absolute addresses

• Pragmas to control the compiler from within the C source

• Predefined macros

All non-standard keywords have two leading underscores (__).

17

3.1. Data Types

The C compiler supports the ISO C99 defined data types.The compiler can operate in either 32-bit mode,
which is the default mode, or in 16-bit mode, depending on the embedded compiler it is used with. The
sizes of all data types are shown in the following tables.

• Size (mem) lists the size of the object when loaded in memory.

• Size (reg) lists the size of the object when loaded in a register.

The CHC compiler tries to minimize the size of a data object based on the use of the variable in the source
code, thus saving the number of flip-flops and number of wires that need to be instantiated in the hardware.

Data types in 32–bit mode

LimitsAlignSize (reg)Size (mem)C Type

0 or 1818_Bool

[-0x80, +0x7F]8≤ 88signed char

[0, 0xFF]8≤ 88unsigned char

[-0x8000, +0x7FFF]16≤ 1616short

[0, 0xFFFF]16≤ 1616
unsigned short
wchar_t

[-0x80000000, +0x7FFFFFFF]32≤ 3232int

[0,0xFFFFFFFF]32≤ 3232unsigned int

0 or 1
[-0x80, +0x7F]
[-0x80000000, +0x7FFFFFFF]

8
8
32

1
≤ 8
≤ 32

8
8
32

enum *)

[-0x80000000, +0x7FFFFFFF]32≤ 3232
long
ptrdiff_t

[0,0xFFFFFFFF]32≤ 3232
unsigned long
size_t

[-0x8000000000000000,
+0x7FFFFFFFFFFFFFFF]

32≤ 6464long long

[0, 0xFFFFFFFFFFFFFFFF]32≤ 6464unsigned long long

[-3.402E+38, -1.175E-38]
[+1.175E-38, +3.402E+38]

323232float (23-bit mantissa)

[-1.798E+308, -2.225E-308]
[+2.225E-308, +1.798E+308]

326464
double
long double (52-bit mantissa)

[0,0xFFFFFFFF]32≤ 3232pointer

18

C-to-Hardware Compiler User Manual

Data types in 16–bit mode (with compiler option --integer-16bit)

LimitsAlignSize (reg)Size (mem)C Type

0 or 1818_Bool

[-0x80, +0x7F]8≤ 88signed char

[0, 0xFF]8≤ 88unsigned char

[-0x8000, +0x7FFF]16≤ 1616short

[0, 0xFFFF]16≤ 1616
unsigned short
__wchar_t

[-0x8000, +0x7FFF]16≤ 1616int

[0,0xFFFF]16≤ 1616unsigned int

0 or 1
[-0x80, +0x7F]
[-0x80000000, +0x7FFFFFFF]

8
8
32

1
≤ 8
≤ 32

8
8
32

enum *)

[-0x80000000, +0x7FFFFFFF]32≤ 3232
long
__ptrdiff_t

[0,0xFFFFFFFF]32≤ 3232
unsigned long
__size_t

[-0x8000000000000000,
+0x7FFFFFFFFFFFFFFF]

32≤ 6464long long

[0, 0xFFFFFFFFFFFFFFFF]32≤ 6464unsigned long long

[-3.402E+38, -1.175E-38]
[+1.175E-38, +3.402E+38]

323232float (23-bit mantissa)

[-1.798E+308, -2.225E-308]
[+2.225E-308, +1.798E+308]

326464
double
long double (52-bit mantissa)

[0,0xFFFFFFFF]32≤ 3232pointer

*) When you use the enum type, the compiler uses the smallest possible type (char, unsigned
char or int) to represent the value.

3.2. Predefined Preprocessor Macros

The CHC compiler supports the predefined macros as defined in the table below. The macros are useful
to create conditional C code.

DescriptionMacro

Expands to 1 if the compiler operates in big endian mode. Otherwise not
recognized as a macro.

__BIG_ENDIAN__

Expands to 1 if the compiler operates in little endian mode. Otherwise not
recognized as a macro.

__LITTLE_ENDIAN__

19

C Language Implementation

DescriptionMacro

Identifies the build number of the compiler, composed of decimal digits for
the build number with leading zeros removed, three digits for the major
branch number and three digits for the minor branch number. For example,
if you use build 1.22.1 of the compiler, __BUILD__ expands to 1022001. If
there is no branch number, the branch digits expand to zero. For example,
build 127 results in 127000000.

__BUILD__

Identifies the compiler.You can use this symbol to flag parts of the source
which must be recognized by the chc compiler only. It expands to 1.

__CHC__

Expands to the compilation date: “mmm dd yyyy”.__DATE__

Expands to 1. Reserved macro.__DOUBLE_FP__

Indicates conformation to the DSP-C standard. It expands to 0.__DSPC__

Expands to the current source file name.__FILE__

Expands to the line number of the line where this macro is called.__LINE__

Expands to 1, if the compiler operates in 16-bit mode.__INTEGER_16BIT__

Expands to the revision number of the compiler. Digits are represented as
they are; characters (for prototypes, alphas, betas) are represented by -1.
Examples: v1.0r1 -> 1, v1.0rb -> -1

__REVISION__

Unrecognized as macro.__SINGLE_FP__

Identifies the level of ANSI standard. Expands to 0.__STDC__

Always expands to 0, indicating the implementation is not a hosted
implementation.

__STDC_HOSTED__

Identifies the ISO-C version number. Expands to 199901L for ISO C99 or
199409L for ISO C90.

__STDC_VERSION__

Identifies the compiler as a TASKING compiler. Expands to 1.__TASKING__

Expands to the compilation time: “hh:mm:ss”__TIME__

Identifies the version number of the compiler. For example, if you use version
2.1r1 of the compiler, __VERSION__ expands to 2001 (dot and revision
number are omitted, minor version number in 3 digits).

__VERSION__

Expand to 1 if the CHC is compatible with the TSK3000 processor and
compiler.
These macros are automatically set by Altium Designer.

__TSK3000__
__C3000__

Expand to 1 if the CHC is compatible with the Power PC processor and
compiler.
These macros are automatically set by Altium Designer.

__PPC__
__CPPC__

Expand to 1 if the CHC is compatible with the ARM processor and compiler.
These macros are automatically set by Altium Designer.

__ARM__
__CARM__

Expands to 1 if the CHC is compatible with the MicroBlaze processor and
compiler.
This macro is automatically set by Altium Designer.

__CMB__

20

C-to-Hardware Compiler User Manual

DescriptionMacro

Expand to 1 if the CHC is compatible with the NIOS processor and compiler.
These macros are automatically set by Altium Designer.

__NIOS2__
__CNIOS__

Example

#if __CHC__
/* this part is only for the C-to-Hardware compiler */
...
#endif

3.3. Pragmas to Control the Compiler

Pragmas are keywords in the C source that control the behavior of the compiler. Pragmas overrule
compiler options.

When the C-to-Hardware compiler is used in combination with an embedded compiler, the C source code
is both processed by the embedded compiler and the CHC compiler. It depends on the available options
of the embedded compiler whether certain pragmas are recognized or have any relevance. For example,
#pragma unroll_factor is only recognized by the embedded compiler if the embedded compiler supports
the optimization loop unrolling. If not, the embedded compiler does not recognize the pragma and will
ignore it. The pragmas described below are the CHC compiler pragmas. Refer to the Users Guide of the
embedded compiler to see which options and pragmas it supports.

The general syntax for pragmas is:

#pragma pragma-spec pragma-arguments [ON | OFF | DEFAULT | RESTORE]

or:

_Pragma("pragma-spec pragma-arguments [ON | OFF | DEFAULT | RESTORE]")

Pragmas marked with (*) accept the following special arguments:

set the pragma to the initial valuedefault

restore the previous value of the pragmarestore

Pragmas marked with (+) are boolean flags, and accept the following arguments:

switch the flag on (same as without argument)on

switch the flag offoff

The compiler recognizes the following pragmas, other pragmas are ignored.

#pragma alias symbol=defined_symbol

Define symbol as an alias for defined_symbol. It corresponds to an equate directive at assembly level.
The symbol should not be defined elsewhere, and defined_symbol should be defined with static storage
duration (not extern or automatic).

21

C Language Implementation

#pragma extern symbol

Force an external reference (.extern assembler directive), even when the symbol is not used in the
module.

#pragma inline
#pragma noinline
#pragma smartinline

Instead of the qualifier inline, you can also use pragma inline and pragma noinline to inline a
function body:

int w,x,y,z;

#pragma inline
int add(int a, int b)
{
 int i=4;
 return(a + b);
}
#pragma noinline

void main(void)
{
 w = add(1, 2);
 z = add(x, y);
}

If a function has an inline or __noinline function qualifier, then this qualifier will overrule the current
pragma setting.

By default, small functions which are not called from many different locations, are inlined. This reduces
execution speed at the cost of area. With the pragma noinline / pragma smartinline you can
temporarily disable this optimization.

#pragma macro
#pragma nomacro (*) (+)

Enable or disable macro expansion.

#pragma message "message" ...

Print the message string(s) on standard output. Arguments are first macro expanded.

#pragma optimize flags (*)
#pragma endoptimize

You can overrule the default compiler optimization for the code between the pragmas optimize and
endoptimize.

22

C-to-Hardware Compiler User Manual

The pragma uses the following flags that are similar to compiler options for Optimization in embedded
toolsets:

Coalescer: remove unnecessary movesa/A+/-coalesce

Consider pointer access to function parameters as return value(s)
and pass them via registers if possible. This optimization is always
performed for C code symbols, even when the #pragma optimize
0 or compiler option --optimize=0 is set. (See also symbol qualifier
Section 3.4.1, “__out”)

b/B+/-outparams

Common subexpression eliminationc/C+/-cse

Predicate optimizationsd/D+/-predicate

Expression simplificatione/E+/-expression

Control flow simplificationf/F+/-flow

Generic assembly code optimizationsg/G+/-glo

Automatic function inliningi/I+/-inline

Instruction schedulerk/K+/-schedule

Loop transformationsl/L+/-loop

Perform simd optimizationm/M+/-simd

Forward storeo/O+/-forward

Constant propagationp/P+/-propagate

Speculateq/Q+/-speculate

Subscript strength reductions/S+/-subscript

Expression tree reorderingt/T+/-tree

Unroll small loopsu/U+/-unroll

Convert IF statements using predicatesv/V+/-ifconvert

Software pipeliningw/W+/-pipeline

Peephole optimizationsy/Y+/-peephole

Use the following options for predefined sets of flags:

No optimization
Alias for ABCDEFGIKLMOPQSTUVWY

0

No optimizations are performed. The compiler tries to achieve an optimal resemblance between source
code and produced code. Expressions are evaluated in the same order as written in the source code,
associative and commutative properties are not used.

Few optimiziations
Alias for aBcDefgIKLMOPqSTUVWY

1

The generated circuit is still comprehensible and could be manually debugged.

23

C Language Implementation

Release purpose optimizations
Alias for abcdefgIklmopqstUvwy

2

Enables more optimizations to reduce area and/or execution time.The relation between source code and
generated circuit may be hard to understand. This is the default optimization level.

Aggressive (all) optimizations
Alias for abcdefgiklmopqstuvwy

3

Enables aggressive global optimization techniques. The relation between source code and generated
instructions is complex and hard to understand. Inlining (i) and loop unrolling (u) are enabled. These
optimizations enhance execution time at the cost of extra generated hardware.

#pragma source (*)(+)
#pragma nosource

With these pragmas you can choose which C source lines must be listed as comments in assembly output.

#pragma stdinc (*)(+)

This pragma changes the behavior of the #include directive. When set, the options -I and -no-stdinc of
the embedded compiler are ignored.

#pragma tradeoff level (*)

Specify tradeoff between speed (0) and size (4).

#pragma unroll_factor number (*)

With this pragma you can specify a unroll factor if you have set #pragma optimization +unroll. The
unroll factor determines to which extent loops should be unrolled. Consider the following loop:

for (i = 1; i < 10; i++)
{
 x++;
}

With an unroll-factor of 2, the loop will be unrolled as follows:

for (i = 1; i < 5; i++)
{
 x++;
 x++;
}

If you enable the unroll optimization, but do not specify an unroll factor, the compiler determines an unroll
factor by itself.

24

C-to-Hardware Compiler User Manual

#pragma warning [number,...] (*)

With this pragma you can disable warning messages. If you do not specify a warning number, all warnings
will be suppressed. This pragma works the same as the --no-warning option of an embedded compiler.

#pragma weak symbol

Mark a symbol as "weak". The symbol must have external linkage, which means a global or external
object or function. A static symbol cannot be declared weak.

A weak external reference is resolved when a global (or weak) definition is found in one of the source
files. However, a weak reference will not cause the extraction of a module from a library to resolve the
reference. When a weak external reference cannot be resolved, the null pointer is substituted.

A weak definition can be overruled by a normal global definition. The linker will not complain about the
duplicate definition, and ignore the weak definition.

3.4. Function and Symbol Qualifiers

3.4.1. Compiling to Hardware

To compile C source code to hardware in Altium Designer, the schematic must contain either an Application
Specific Processor (WB_ASP) component or a C code symbol.

The CHC compiler supports a number of function qualifiers and memory qualifiers that specify whether
and how C source is compiled to hardware.You can manually add these function qualifiers and/or symbol
qualifiers in your C source, but Altium Designer adds them automatically when you are filling out the
dialogs for the Application Specific Processor or C code symbol.

The following function qualifiers are implemented:

__rtl

With the __rtl function qualifier you tell the compiler to compile this function to hardware.

An __rtl qualified function can be called by other __rtl qualified functions but cannot be called by non
__rtl qualified functions.To make an __rtl qualified function callable by a non __rtl qualified function,
you must also use the function qualifier __export.

__export

An __export qualified function is callable from the processor core, that is, it can be called from non
__rtl qualified functions. The __export qualifier must be used in combination with the __rtl and
__CC() qualifiers. The __export qualifier causes the function's interface signals to be included in the
top-level entity definition of the generated VHDL or Verilog code.

Application Specific Processor

In the configurations dialog of the WB_ASP component you can select which functions should be compiled
to hardware:

25

C Language Implementation

1. Right-click on the ASP component and select Configure ... (WB_ASP)...

The Configure (WB_ASP Properties) dialog appears.

2. On the right side of the dialog you'll find the section Symbols In Hardware.

- In the lower part, in the column Implement in Hardware, select the functions that you want to be
compiled to hardware. (This is the equivalent of __rtl qualifier.)

- If the hardware function should be callable from a software function, mark it as exported as well in
the column Export to Software. (This is the equivalent of the __export qualifier.)

C code symbol

The C code symbol is associated with a C source document that contains the function to be compiled.
This 'main' function may call other functions. For the 'main' function the __export qualifier is automatically
added. Because all functions in the C source belonging to the C code symbol are compiled to hardware
by definition, an __rtl qualifier is not needed in this context.

__import

An __import qualified function is a function, defined in a different project, which is callable from an
__rtl qualified function in the current project. To interface with an __import qualified function, the
compiler adds the required signals to the top level entity. The __import qualifier can only be used in
combination with the __rtl qualifier. The imported function must have been defined elsewhere.

__CC (bus, [id], [nowait], [combinatorial])

For each function that should be compiled to hardware, Altium Designer automatically adds the __CC
(calling convention) qualifier with fixed attributes. It not necessary, but possible to add this qualifier to
your C source by hand.

__CC is the calling convention qualifier. The __CC qualifier must be used in combination with the __rtl
and __export qualifiers and has the following syntax:

__CC (bus,[id],[nowait],[combinatorial])

Specifies the interconnect mechanism between the processor core and the hardware
function.
Possible values are:

wishbone : interface via Wishbone bus
nios_ci : interface via NIOS II custom instruction interface
parallel : default, no bus specific wrapper is created

bus

Defines how the hardware function is connected to/addressed by the processor core.
The id must be a unique number within the application scope, and should be in the
range 0..31.

id

26

C-to-Hardware Compiler User Manual

The optional nowait parameter indicates that the processor core will not wait until
the hardware function returns, but causes the processor core to proceed immediately
with execution of the instruction(s) following the call to the hardware function. As a
result the processor core and the hardware functions run in parallel. This parameter
is only possible in combination with a wishbone bus.

nowait

With this parameter you ask the CHC compiler to compile the C source to a
combinatorial circuit (or: zero-cycle circuit as opposed to a multi-cycle circuit which
needs a clock, reset, start and done signal on the schematic). If the compiler is not
able to generate a zero-cycle schedule, it issues an error. This parameter is only
possible in combination with a parallel bus.

combinatorial

Application Specific Processor example:

__rtl __export __CC(wishbone, 1) void my_hw_func (void);

Because of the __rtl qualifier, the code for the C function my_hw_func is generated by the CHC
compiler.

The __export qualifier enables the function my_hw_func to be called by code that executes on the
processor core (by non __rtl qualified functions).

Because of the __CC qualifier, the CHC compiler produces a Wishbone bus interface which connects an
ASP to a soft-core processor. Because the nowait parameter is not specified, the processor core will
wait (by entering a polling loop) until my_hw_func returns before it executes subsequent instructions.

Altium Designer generates this function qualifier automatically with the wishbone attribute, a unique id
and without the nowait attribute:

__CC(wishbone, 1)

You can verify this by opening the qualifier file projectname.qua which is located in the output directory
of your embedded project.

C code symbol example:

__export __CC(parallel, combinatorial)
void add(int8_t a, uint8_t b, __out int16_t* sum)

The __rtl qualifier is not needed because all C source for C code symbols is compiled to hardware.

The __export qualifier is added to the 'main' function and enables access to the (hardware compiled)
function (the input and output ports on the schematic).

Because of the __CC qualifier, the CHC compiler produces a parallel bus interface through which you
can connect the the input and output ports of the C code symbol to other components.

__width()

When programming in C, input and output parameters of functions are defined by their types (char, int,
...). Each data type has a specified number of bits and this determines the number of lines the CHC
compiler will generate when it compiles the function to hardware. Especially for C code symbols, you may

27

C Language Implementation

want to be more specific in cases where you know the maximum number of bits needed for an input or
output parameter.

With the symbol qualifier __width(x) you can specify the number of bits for a symbol.

Example

Suppose you have a C code symbol that is programmed with the following function:

void add(int8_t a, int8_t b, int16_t* result)
{
 result* = a + b;
}

The function has two input parameters with a width of 8 bits and one output parameter with a width of 16
bits.You can restrict the number of bits for the input and/or output parameters as follows:

void add(int8_t __width(6) a, int8_t __width(6) b, int16_t __width(7)* result)

Be aware of the following restrictions:

• You can use the __width qualifier only for integral types

• The specified width should be in the range [1 .. 64].

• The specified width cannot exceed the width of the type:__width(9) uint8_t obj causes an error.

In Altium Designer you can specify the bit-width from the C code symbol on your schematic:

1. Double-click on a port on the C code symbol

The C code Entry (Parameter) dialog appears.

2. Enter the number of bits in the Integer Width field.

__out

With the symbol qualifier __out you force the CHC compiler to treat a function parameter with pointer
type as an extra return value. In this case, the compiler tries to pass the variable via registers. If this is
not possible, the compiler issues an error.

This type of optimization is always done for C code symbols (the CHC compiler implicitly places the
symbol qualifier __out before every parameter with pointer type).

The optimization will fail when you try to write to the pointer offset or when you also read the indirected
pointer:

void add(int8_t a, uint8_t b, __out int16_t* sum)
{
 *(sum+1) = 3; // optimization fails: writing to pointer offset
 *sum += a + b; // optimization fails: reading from indirected pointer
}

28

C-to-Hardware Compiler User Manual

Restrictions on Function Calls

• The C-to-Hardware compiler does not support function reentrancy, so recursion (cycles in the call
graph) and concurrent access by multiple processes are not allowed. In case you call a hardware
function from an interrupt handler, make sure all concurrency conflicts are solved.

• For each hardware function a function prototype that declares the return type of the function and also
declares the number and type of the function’s parameters is required. Functions with a variable number
of arguments are supported.

• The following rules apply to the interaction between software and hardware:

• Recursion and concurrent access by multiple processes are only allowed with non __rtl qualified
functions in the call graph.

• An __export __rtl qualified function can be called from non __rtl qualified functions, thus can
be called from functions that are executed by a processor core.

• An __export __rtl qualified function can be called from __rtl qualified and __rtl __export
qualified functions.

• An __rtl qualified function can be called from __rtl qualified functions.

• An __rtl qualified function cannot call a non __rtl qualified function, so a function that is converted
into an electronic circuit cannot call a function that is executed by a processor core.

• Non __rtl qualified functions can be inlined into __rtl qualified functions.

• An __export qualified function cannot be inlined.

• Function pointers are not allowed as argument or return value in __export qualified functions.

• An __export qualified function cannot have a variable number of arguments.

3.4.2. Inlining Functions: inline / __noinline

During compilation, the C compiler automatically inlines small functions in order to reduce interconnect
overhead (smart inlining). The compiler inserts the function body at the place the function is called. If the
function is not called at all, the compiler does not generate code for it. The C compiler decides which
functions will be inlined.You can overrule this behavior with the two keywords inline (or __inline in
C90 mode) and __noinline.
You can also use this qualifier in combination with the __rtl qualifier (assigned within Altium Designer,
as described previously). The inlined function then is integrated in the same hardware component as its
caller.

With the inline keyword you force the compiler to inline the specified function, regardless of the
optimization strategy of the compiler itself:

inline unsigned int abs(int val)
{
 unsigned int abs_val = val;
 if (val < 0) abs_val = -val;

29

C Language Implementation

 return abs_val;
}

You must define inline functions in the same source module in which you call the function, because the
compiler only inlines a function in the module that contains the function definition. When you need to call
the inline function from several source modules, you must include the definition of the inline function in
each module (for example using a header file).

With the __noinline keyword, you prevent a function from being inlined:

__noinline unsigned int abs(int val)
{
 unsigned int abs_val = val;
 if (val < 0) abs_val = -val;
 return abs_val;
}

Using pragmas: inline, noinline, smartinline

Instead of the inline qualifier, you can also use #pragma inline and #pragma noinline to inline
a function body:

#pragma inline
unsigned int abs(int val)
{
 unsigned int abs_val = val;
 if (val < 0) abs_val = -val;
 return abs_val;
}
#pragma noinline
void main(void)
{
 int i;
 i = abs(-1);
}

If a function has an inline/__noinline function qualifier, then this qualifier will overrule the current
pragma setting.

With the #pragma noinline / #pragma smartinline you can temporarily disable the default situation
that the C compiler automatically inlines small functions.

3.5. Memory and Memory Qualifiers

3.5.1. Introduction

Traditional processor cores provide a fixed set of hardware resources which are described in the processor's
data books. High performance processor cores –including most signal processors– implement multiple
memory spaces to enable the processor core to access multiple data objects within a single clock cycle.
Parallel access to data is required to keep the processor core’s functional units busy.

30

C-to-Hardware Compiler User Manual

The ISO-C language abstracts a processor core’s memory system as one large array of memory, so
language extensions had to be introduced to provide better programming support for these
high-performance processor cores. So-called memory type qualifiers allow you to explicitly declare the
memory space in which a data object is allocated. If a pointer is dereferenced, the offset and the memory
space the pointer points to, must be known. Therefore the memory space to which the pointer points, is
also part of the pointer’s type specifier.

Language extension for memory space qualifiers have been standardized see:

• DSP-C an Extension to ISO/IEC 9899:1999(E) PROGRAMMING LANGUAGES C

• ISO TR18037 Technical Report on Extensions for the Programming Language C to support embedded
processors

The Altium Viper compilers comply to the DSP-C specification which is a predecessor of the ISO technical
report.

Resource File and LSL file

A hardware compiler creates an execution environment (in contrast to an embedded compiler which
generates an instruction sequence that is executed by a processor core).The hardware resources available
to the CHC compiler are described in the resource definition file while the linker script language file (LSL
file) describes the memories available to the CHC compiler.

The resource definition file describes the available number of functional units and their characteristics
that the compiler can instantiate. The LSL file describes the available number of memories and their
characteristics that the compiler can use and/or instantiate. Common FPGA devices contain a lot of local
on-chip RAM, known as block-RAM or distributed RAM. Programmable hardware offers an abundance
of functional units and as a result, the memory system is often the performance bottleneck. To solve this
problem, the compiler creates a memory system that supports concurrent memory accesses. For this
purpose the CHC compiler supports up to 10 different memory spaces.

The compiler automatically distributes data objects over multiple memory spaces. Only if the compiler is
not able to create a memory partitioning that satisfies your performance requirement, it is necessary to
use memory type qualifiers. It may also be useful to use memory space qualifiers to explicitly qualify
variables and/or pointers that are located in / point-to the memory that is shared with the processor core.

Initialized Variables with Static Storage

The memory on the FPGA system is initialized at system configuration time, when the bit-file that configures
the FPGA is loaded into the FPGA. Variables located in memory that is instantiated by the CHC compiler
(these memories are components under the top-level VHDL entity), are initialized.

3.5.2. Storage Class Specifier: __rtl_alloc

It is possible to indicate that a static data object (variable) should be allocated by the CHC compiler instead
of the embedded compiler. The CHC compiler allocates data objects in one of the block RAMs on the
ASP where it can be accessed much faster than when allocated by the compiler, outside the ASP.
__rtl_alloc qualified variables can only be accessed by __rtl qualified functions. If you try to access
an __rtl_alloc qualified variable from a non __rtl qualified function, the compiler issues a error.

31

C Language Implementation

You can assign the storage class specifier __rtl_alloc to data objects with static storage and a scope
other then block scope. __rtl_alloc qualified data objects should not be larger than 32 kB while by
default, a total of 96 kB of ASP block RAM is available for __rtl_alloc qualified data objects.

Example

 int sw_var; int __rtl_alloc hw_var;

The storage for sw_var is allocated by the embedded toolset; the storage for hw_var is allocated by the
CHC compiler.

Like the __rtl qualifier, you can use Altium Designer to mark these variables from the ASP configuration
dialog instead of using the __rtl_alloc qualifier:

1. Right-click on the ASP component and select Configure ... (WB_ASP)...

The Configure (WB_ASP Properties) dialog appears.

2. On the right side of the dialog you'll find the section Symbols in Hardware.

- In the upper part, in the column Allocate in Hardware, select the variables that you want to be located
by the hardware compiler. (This is the equivalent of __rtl_alloc qualifier.)

3.5.3. Memory Qualifier: __mem0 .. __mem9

Memory type qualifiers are used to specify the memory space in which a data object is allocated or to
specify the memory space to which a pointer points.

The CHC compiler treats every physical memory defined in the LSL file as a memory space. Each
memory in the LSL file is associated with one of the memory type qualifiers __mem0 .. __mem9,
depending on the order in which they appear in the LSL file. For performance reasons, the LSL
file specifies only __mem0, __mem1__mem2, and __mem3. It is possible to manually edit the LSL
file memory_asp.lsl which is located in the output directory of your project, and specify more
memories up to the supported maximum of 10.

Syntax

__memX

where X is a digit in the range [0..9].

If you do not specify a memory qualifier, the default __mem0 qualifier is assumed.This qualifier is associated
with shared memory, whereas the other qualifiers __mem1..__mem9 are associated with block RAMs
on the ASP.

Limiting conditions

• A list of declaration type specifiers cannot contain different memory type qualifiers.

• Structure or union members cannot have memory qualifiers.

32

C-to-Hardware Compiler User Manual

Semantics

If the same memory qualifier appears more than once in the same specifier-qualifier-list (either directly
or via one or more typedefs), the behavior is the same as if it appeared only once. The memory space
qualified with __mem0, is the shared memory space.

The other memory spaces __mem1, __mem2, ... are typically mapped to the available data memory in
descending order of parallel accessibility. This means that parallel use of __mem1 and __mem2 is equally
or better possible than parallel use of __mem2 and __mem3, and so on. A __memX qualified pointer cannot
be converted to a pointer without a type qualifier, or with a different type qualifier, or vice versa.

A conforming implementation may map memory qualified objects with automatic storage duration to
default memory space.

No assumptions can be made when casting a pointer to a different memory space. Such casts are therefore
not allowed.

Additional constraints to the relational operators concerning memory qualified operands:

• Both operands are pointers with equal memory qualifiers.

Additional constraints to the equality operators concerning memory qualified operands:

• Both operands are pointers with equal memory qualifiers.

Each memory space in the LSL file has a user defined name; you can use this name as an alias
for the __memX qualifier. By default, the user names correspond to the qualifier name.You can
map the predefined memory type qualifier __memX to an arbitrary string by editing the LSL file.
For example, if you share memory between a processor core and the hardware functions, you
may prefer to use qualifier __shared_mem instead of __memX to increase the readability of the
source code. These LSL names should not conflict with C keywords and symbols used in your C
source.

Example

int __mem1 gi;

void func (void)
{
 static int __mem1 * __mem0 pi = &gi;
}

Variable gi is located in __mem1. Pointer pi is located in __mem0 and points to a location in __mem1.
Now it is legal to assign the address of gi to pi.The pointer is located in shared memory and is accessible
both from __rtl qualified functions and non __rtl qualified functions.

See also Section 3.5.5, Shared Memory.

33

C Language Implementation

3.5.4. Placing a Data Object at an Absolute Address: __at()

Just like you can declare a variable in a specific memory (using memory type qualifiers), you can also
place a variable at a specific address in memory.

With the attribute __at() you can specify an absolute address. The address is a 32-bit address.

Examples

unsigned char Display[80*24] __at(0x2000);

The array Display is placed at address 0x2000.

int i __at(0x1000) = 1;

The variable i is placed at address 0x1000 and is initialized.

Limiting conditions

Take note of the following limiting conditions if you place a variable at an absolute address:

• The argument of the __at() attribute must be a constant address expression.

• You can place only variables with static storage at absolute addresses. Parameters of functions, or
automatic variables within functions cannot be placed at absolute addresses.

• You cannot place structure members (in contrast to the whole structure) at an absolute address.

• Absolute variables cannot overlap each other.

• When you declare the same absolute variable within two modules, this produces conflicts (except when
one of the modules declares the variable 'extern').

• If you use 0 as an address, the value is ignored. A zero value indicates a relocatable section.

3.5.5. Shared Memory

An FPGA design may contain both software functions (programmed soft processor core) and hardware
functions (an ASP). This inevitably creates the need for sharing data between hardware and software.
The figure below shows a schematized design, containing a soft-core, an application specific processor
(ASP) and several memory locations. See also the FPGA design created in the tutorial TU0130 Getting
Started with the C-to-Hardware Compiler.

Memory on an FPGA, called block RAM, can be:

• Accessible from the soft-core only,

• Accessible from the hardware only, or

• Shared memory that is accessible from both the software and the hardware.

All types of memory can be intern (on the FPGA) or extern to the FPGA.

34

C-to-Hardware Compiler User Manual

Figure 3.1. FPGA with Soft-core, ASP and Memory

Data can be shared between the ASP and the soft-core in two ways: via the I/O bus or via shared memory.

1. Data sharing via I/O bus

• Data is passed as function parameters from a software function to a hardware function.

• Data is passed as return value from a hardware function to the software caller.

2. Data sharing via shared memory

A data object that should be available to both the hardware and the software, could be allocated in
shared memory that is both connected to the ASP as to the soft-core. Both the ASP and the soft-core
need to know the address of the data object. This can be done in two ways:

• Pass a pointer value to the data object as parameter to the hardware function. Make sure the data
object is allocated in shared memory.

• Use the __at() keyword to locate the data object at an absolute address. (See Section 3.5.4,
Placing a Data Object at an Absolute Address: __at().

35

C Language Implementation

3.6. Libraries

The main difference between traditional C libraries and the CHC C library, is the format in which the library
is distributed.The CHC compiler's C library is a MIL archive. MIL, the Medium Level Intermediate Language,
is a language used by TASKING compilers to represent the source code in a format that is suited for code
generation by the compiler back-end.

The CHC C library was created by translating the source code of the C library into the MIL format. The
MIL format is both an output and input format for the compiler. Subsequently, the MIL files were grouped
together by the archiver into a library.

The C library also contains the startup code.The startup code is qualified __export and calls the main()
function. At least one function in a program should be __export qualified, otherwise no hardware functions
will be instantiated. The C library should be listed as one of the files that are passed to the compiler.

Example

chc file.c .../lib/libc.ma

Compile file file.c and link it with the C library libc.ma. If file.c contains a main() then the startup
code is extracted form libc.ma.

DescriptionLibrary

32-bit C library (big endian)libc.ma

16-bit C library (big endian)libc16.ma

32-bit C library (little endian)libcle.ma

16-bit C library (little endian)libc16le.ma

36

C-to-Hardware Compiler User Manual

Chapter 4. Using the CHC Compiler
This chapter explains the compilation process and how to invoke the compiler when building your project.

4.1. Invocation and Operating Modes

The CHC compiler is fully integrated in Altium Designer and operates always in concert with an embedded
toolset.

Functions that are __rtl qualified, are processed by the CHC compiler and are translated into an
electronic circuit, whereas the non __rtl qualified functions are processed by the embedded compiler
and are translated into assembly code (see Section 3.4, Function and Symbol Qualifiers). The assembly
code is then further assembled and linked using a traditional build flow.

Example: Compile to both software and hardware

This example shows how to create a system that runs on a processor core and uses a hardware function
to off-load a computational intensive function to hardware.

jpeg.c

__export __rtl __CC(wishbone,0) void jpegdct(short *d, short *r);
void cleanup(void);

void main(void)
{
 ...
 jpegdct(short *d, short *r);
 ...
 cleanup();
}

jpeg_dct.c

__export __rtl __CC(wishbone,0) void jpegdct(short *d, short *r)
{
 ...
}

cleanup()
{
 ...
}

Invocation

To invoke the CHC compiler, two criteria must be met:

• The schematic of your project must contain an Application Specific Processor (ASP) component. The
ASP component will contain the hardware compiled functions when your entire project has been built
and synthesized.

37

• The ASP component needs to be configured to translate selected functions to hardware.

In the example above, functions are selected using the function qualifiers __rtl, __export and __CC.
Instead of using these function qualifiers, you can also use the configuration dialog to mark these functions.
To configure the ASP component for hardware compilation, proceed as follows:

1. On the schematic, right-click on the ASP component and select Configure Ux (WB_ASP) ...

The Configure Ux (WB_ASP Properties) dialog appears.

2. Enable both option Generate ASP and option Use ASP from Software.

This will effectively invoke the CHC compiler when you build and synthesize your project.You can
disable the option Use ASP from software to test your project without calling the hardware compiled
functions. In this case all hardware will be generated, but because the embedded software compiler
is now told to compile these functions to software, the software variant of the functions are called
during execution. Note that this does not work if you typed the function qualifier __rtl in your source
code by hand!

Invoking the CHC compiler is only useful if functions are selected to translate to hardware. As explained
in Section 3.4, Function and Symbol Qualifiers, you can either manually mark these functions in the
C source with the function qualifier __rtl. However, you can also select them in this dialog:

3. In the Symbols in Hardware section, in the lower part under the Implement in Hardware column,
select the functions that should be translated to hardware.

If a hardware function is called by a software function, mark it as Export to Software too! (This is
the equivalent of the __export function qualifier).

The chc compiler analyzes all C source files and creates an electronic circuit that implements the jpegdct
function in this example. If file jpeg.c would not have been passed to the CHC compiler, the compiler
would still be able to produce a correct hardware implementation for the jpegdct function. This
implementation would probably be less efficient since the compiler is not able to apply application wide
optimizations. For example, the compiler would not be able to detect whether the pointers d and r are
aliases or not.

The chc compiler and the regular embedded compilers, such as the c3000 compiler, understand the
meaning of the __export __rtl and __CC() qualifiers. The chc compiler builds the necessary ”glue"
logic to connect the generated electronic circuit to a TSK3000 processor core (interface via Wishbone
bus). The c3000 compiler calls the jpegdct function using a special calling convention that triggers the
hardware function.

In Altium Designer, the build process is fully automated.

4.1.1. CHC Compiler Options *

Normally, you do not need to set compiler options; the fully automated build process uses default settings
that work for all situations. Nevertheless, it is possible to set your own compiler options, for example to
manually choose for certain optimizations. The CHC compiler options are not further explained in this
manual, except where absolutely necessary.You can ask for a list of options with their descriptions by
invoking the CHC compiler from the command line:

38

C-to-Hardware Compiler User Manual

1. Make sure that you have started Altium Designer to gain licensed access to the CHC compiler on
the command line. In Altium Designer, recompile your embedded project to activate the license.

2. Open a command prompt window and browse to ...\System\Tasking\chc\bin in the installation
directory of Altium Designer.

3. Invoke the CHC compiler with the command chc -?o. This gives a list of all available options with
their descriptions.

To manually set a CHC compiler option in Altium Designer, you need to have an embedded project (which
may be part of an FPGA project). To access the compiler options:

1. In the Projects panel, right-click on the name of the embedded project and select Project Options...

The Options for Embedded Project .PrjEmb appears.

2. On the Compiler Options tab, in the left pane, expand the C Compiler entry and select
Miscellaneous.

3. In the Additional CHC compiler options field, you can enter additional options for the CHC compiler.

4. Click OK to confirm the new settings and to close the dialog.

If you have an FPGA project with C sheet symbols but further no embedded project being part of
the FPGA project, it is not possible to manually set additional CHC compiler options.

4.2. Simulating the Compiler Output

This section is only relevant if you are familiar with VHDL, VHDL simulation tools (for example ModelSim),
and are interested in how the circuits that are generated by the chc compiler behave.

Please have a look at the file ...System\Tasking\chc\etc\pcls_driver.vhdl.

This file is a test bench driver for compiler generated hardware circuits. The top level entity in file
pcls_driver.vhdl is 'test_bench', it instantiates three components: pcls_driver, c_root, and
putchar.

Component c_root is the top-level component created by the CHC compiler and contains the logic
described in your C source files. Component pcls_driver activates the c_root component. First it
resets and then activates component c_root by asserting the 'act' signal.The pcls_driver component
also generates the clock signal. When the c_root component finishes, it asserts its 'done' signal. When
this happens, the pcls_driver prints the number of clock cycles consumed by the c_root component.
Component putchar implements the C library function __putchar(). This function prints characters
using the facilities of the textio package in the VHDL std library.

Example

main.c

39

Using the CHC Compiler

{
 printf("It's a strange world");
}

Invocation

chc main.c .../lib/libc.ma -omain.vhdl

When you load the files pcls_driver.vhdl and main.vhdl in your VHDL simulator and simulate the
test_bench entity, you will see the text "It's a strange world" in the simulator's text output window.

See also the file ...\System\Tasking\chc\lib\src\cstart.c. The file cstart.c contains the
startup code that is executed before the main function is called.

The test driver expects that all memory devices are created by the compiler. If you specify (in the
LSL file) that the compiler generated circuit interfaces with extern memory then the pcls_driver
should be modified and provide an interface to the memory.

4.3. Synthesizing the Compiler Output

The generated RTL is formatted in accordance with design guidelines provided by Altera, Altium, Synplicity
and Xilinx synthesis tools. FPGA device specific building blocks are automatically inferred from the
compiler generated RTL by these synthesizers. Unless syntax requirements of the synthesizers conflict
with the 'IEEE P1076.6 Standard For VHDL Register Transfer Level Synthesis', or the '1364.1 IEEE
Standard for Verilog Register Transfer Level Synthesis', the generated RTL complies with the IEEE
standards.

Extern resources, i.e. resources defined in the resource definition file with attribute extern=1,
are not instantiated by the compiler and should be passed to the synthesis tool.

4.4. How the Compiler Searches Include Files

When you use include files (with the #include statement), you can specify their location in several ways.
The compiler searches the specified locations in the following order:

1. If the #include statement contains an absolute path name, the compiler looks for the specified file
in the specified directory. If no path is specified, or a relative path is specified, the compiler looks in
the same directory as the location of the source file. This is only possible for include files that are
enclosed in "".

This first step is not done for include files enclosed in <>.

2. When the compiler did not find the include file, it looks in the directories that are specified with the
option Include files path. (While in your C source file, from the Project menu select Project options...
and go to the Build Options).

You can set this option for the embedded project, but it is shared with the CHC compiler.

40

C-to-Hardware Compiler User Manual

3. When the compiler did not find the include file (because it is not in the specified include directory or
because no directory is specified), it looks in the path(s) specified in the environment variable CHCINC.

4. When the compiler still did not find the include file, it finally tries the default include directory relative
to the installation directory.

Example

Suppose that the C source file test.c contains the following lines:

#include <stdio.h>
#include "myinc.h"

First the compiler looks for the file stdio.h in the specified directory. Because no directory path is
specified with stdio.h, the compiler searches in the environment variable CHCINC and then in the default
include directory.

The compiler now looks for the file myinc.h, in the directory where test.c is located. If the file was not
found, the compiler searches in the environment variable CHCINC and then in the default include
directory.

4.5. How the Compiler Searches the C library

If your code calls functions defined in the C library you should pass the path to the C library at the command
line. The compiler will link the function definitions with your code.

The 32-bit version of the C library is named libc.ma. The 16-bit version of the C library is named
libc16.ma. Both libraries are located in directory ...\System\Tasking\chc\lib\. The compiler
does not search in other directories than the one specified at the command line, nor are there any options
or environment variables available to specify a search path.

The C library is a MIL archive. It is created by compiling all C library source modules to the MIL format,
the resulting MIL files are combined into one archive (i.e. library) from which the compiler extracts the
required functions.

4.6. Rebuilding the C Library

All sources for the C library are shipped with the product.You can rebuild the C library by executing the
makefiles located in directories ...\System\Tasking\chc\lib\src\libc and
...\System\Tasking\chc\lib\src\libc16 to recreate the 32-bit, respectively the 16-bit versions
of the C library.

The command to execute the make file is:

mkhc makefile

You may want to rebuild the library, for example to change the size of the heap which has a size of 200
bytes by default.

41

Using the CHC Compiler

4.7. Debugging the Generated Code

The compiler generated VHDL or Verilog is correct by construction. This means that if the C code is free
of bugs then the generated code is also free of bugs. The only way to debug a real electronic circuit is to
analyze waveforms captured by either a HDL simulator or a (virtual) logic analyzer. Analyzing the
waveforms is tedious and time consuming and correlating the waveforms to the C source is possible but
difficult. So, before you compile a code fragment to hardware, you first have to be sure that the C source
code is correct.

Before you compile your code to hardware:

• you should analyze and fix all warning messages issued by the compiler

• you may enable MISRA-C code checking and analyze and fix all warnings

• you should debug and run your software on an embedded processor core. Alternatively you can debug
your code on a PC.

Finally you should instantiate the debugged functions in hardware.

4.8. C Code Checking: MISRA-C

The C programming language is a standard for high level language programming in embedded systems,
yet it is considered somewhat unsuitable for programming safety-related applications.Through enhanced
code checking and strict enforcement of best practice programming rules, TASKING MISRA-C code
checking helps you to produce more robust code.

MISRA-C specifies a subset of the C programming language which is intended to be suitable for embedded
automotive systems. It consists of a set of rules, defined in MISRA-C:2004, Guidelines for the Use of the
C Language in Critical Systems (Motor Industry Research Association (MIRA), 2004).To enable MISRA-C
checking:

1. Make the (or one of the) C source files visible in your workspace.

2. From the Project menu choose Project Options...

The Options for Embedded Project dialog appears.

3. Expand the C compiler entry and select MISRA-C.

4. Set MISRA-C rules to All supported MISRA-C rules.

For a complete overview of all MISRA-C rules, see Chapter 6, MISRA-C Rules.

Implementation issues

The MISRA-C implementation in the compiler supports nearly all rules. Only a few rules are not supported
because they address documentation, run-time behavior, or other issues that cannot be checked by static
source code inspection.

During compilation of the code, violations of the enabled MISRA-C rules are indicated with error messages
and the build process is halted.

42

C-to-Hardware Compiler User Manual

MISRA-C rules are divided in required rules and advisory rules. If rules are violated, errors are generated
causing the compiler to stop. With the following options warnings, instead of errors, are generated for
either or both the required rules and the advisory rules. Being still in the MISRA-C pane:

• In the right pane, enable the options Turn advisory rule violation into warning and/or Turn required
rule violation into warning.

Not all MISRA-C violations will be reported when other errors are detected in the input source.
For instance, when there is a syntax error, all semantic checks will be skipped, including some of
the MISRA-C checks. Also note that some checks cannot be performed when the optimizations
are switched off.

4.9. C Compiler Error Messages

The C compiler reports the following types of error messages:

F (Fatal errors)

After a fatal error the compiler immediately aborts compilation.

E (Errors)

Errors are reported, but the compiler continues compilation. No output files are produced.

W (Warnings)

Warning messages do not result into an erroneous output file. They are meant to draw your attention to
assumptions of the compiler for a situation which may not be correct.You can control warnings with
embedded compiler option Treat warnings as errors which is passed to the CHC compiler as well:

1. While in your C source, from the Project menu select Project Options...

The Options for Embedded Project dialog appears.

2. Expand the C Compiler entry and select Diagnostics.

3. Set Treat warnings as errors to True

I (Information)

Information messages are always preceded by an error message. Information messages give extra
information about the error.

S (System errors)

System errors occur when internal consistency checks fail and should never occur.When you still receive
the system error message

S9##: internal consistency check failed - please report

43

Using the CHC Compiler

please report the error number and as many details as possible about the context in which the error
occurred.

44

C-to-Hardware Compiler User Manual

Chapter 5. Libraries
5.1. Introduction

This chapter contains an overview of all library functions that you can call in your C source. This includes
all functions of the standard C library (libc.ma).

Section 5.2, Library Functions, gives an overview of all library functions you can use, grouped per header
file. A number of functions declared in wchar.h are parallel to functions in other header files. These are
discussed together.

Section 5.3, C Library Reentrancy, gives an overview of which functions are reentrant and which are not.

The following libraries are included in the chc toolset. Both Altium Designer and the control program cchc
automatically select the appropriate libraries depending on the specified chc derivative.

DescriptionLibrary

32-bit C library (big endian)libc.ma

16-bit C library (big endian)libc16.ma

32-bit C library (little endian)libcle.ma

16-bit C library (little endian)libc16le.ma

5.2. Library Functions

The tables in the sections below list all library functions, grouped per header file in which they are declared.
Some functions are not completely implemented because their implementation depends on the context
where your application will run. These functions are for example all I/O related functions.

5.2.1. assert.h

Prints a diagnostic message if NDEBUG is not defined. (Implemented as macro)assert(expr)

5.2.2. complex.h

The current version of the CHC compiler does not support the type specifiers _Complex and _Imaginary.
Therefore the functions in this include file are not supported.

The complex number z is also written as x+yi where x (the real part) and y (the imaginary part) are real
numbers of types float, double or long double.The real and imaginary part can be stored in structs
or in arrays. This implementation uses arrays because structs may have different alignments.

The header file complex.h also defines the following macros for backward compatibility:

45

complex _Complex /* C99 keyword */
imaginary _Imaginary /* C99 keyword */

Parallel sets of functions are defined for double, float and long double. They are respectively named
function, functionf, functionl. All long type functions, though declared in complex.h, are implemented
as the double type variant which nearly always meets the requirement in embedded applications.

This implementation uses the obvious implementation for complex multiplication; and a more sophisticated
implementation for division and absolute value calculations which handles underflow, overflow and infinities
with more care. The ISO C99 #pragma CX_LIMITED_RANGE therefore has no effect.

Trigonometric functions

Returns the complex sine of z.csinlcsinfcsin

Returns the complex cosine of z.ccoslccosfccos

Returns the complex tangent of z.ctanlctanfctan

Returns the complex arc sine sin-1(z).casinlcasinfcasin

Returns the complex arc cosine cos-1(z).cacoslcacosfcacos

Returns the complex arc tangent tan-1(z).catanlcatanfcatan

Returns the complex hyperbolic sine of z.csinhlcsinhfcsinh

Returns the complex hyperbolic cosine of z.ccoshlccoshfccosh

Returns the complex hyperbolic tangent of z.ctanhlctanhfctanh

Returns the complex arc hyperbolic sinus of z.casinhlcasinhfcasinh

Returns the complex arc hyperbolic cosine of z.cacoshlcacoshfcacosh

Returns the complex arc hyperbolic tangent of z.catanhlcatanhfcatanh

Exponential and logarithmic functions

Returns the result of the complex exponential function ez.cexplcexpfcexp

Returns the complex natural logarithm.cloglclogfclog

Power and absolute-value functions

Returns the complex absolute value of z (also known as norm,
modulus or magnitude).

cabslcabsfcabs

Returns the complex value of x raised to the power y (xy) where
both x and y are complex numbers.

cpowlcpowfcpow

Returns the complex square root of z.csqrtlcsqrtfcsqrt

Manipulation functions

Returns the argument of z (also known as phase angle).carglcargfcarg

Returns the imaginary part of z as a real (respectively as a double,
float, long double)

cimaglcimagfcimag

46

C-to-Hardware Compiler User Manual

Returns the complex conjugate value (the sign of its imaginary part
is reversed).

conjlconjfconj

Returns the value of the projection of z onto the Riemann sphere.cprojlcprojfcproj

Returns the real part of z as a real (respectively as a double,
float, long double)

creallcrealfcreal

5.2.3. ctype.h and wctype.h

The header file ctype.h declares the following functions which take a character c as an integer type
argument. The header file wctype.h declares parallel wide-character functions which take a character
c of the wchar_t type as argument.

Descriptionwctype.hctype.h

Returns a non-zero value when c is an alphabetic character or a
number ([A-Z][a-z][0-9]).

iswalnumisalnum

Returns a non-zero value when c is an alphabetic character
([A-Z][a-z]).

iswalphaisalpha

Returns a non-zero value when c is a blank character (tab, space...)iswblankisblank

Returns a non-zero value when c is a control character.iswcntrliscntrl

Returns a non-zero value when c is a numeric character ([0-9]).iswdititisdigit

Returns a non-zero value when c is printable, but not a space.iswgraphisgraph

Returns a non-zero value when c is a lowercase character ([a-z]).iswlowerislower

Returns a non-zero value when c is printable, including spaces.iswprintisprint

Returns a non-zero value when c is a punctuation character (such
as '.', ',', '!').

iswpunctispunct

Returns a non-zero value when c is a space type character (space,
tab, vertical tab, formfeed, linefeed, carriage return).

iswspaceisspace

Returns a non-zero value when c is an uppercase character ([A-Z]).iswupperisupper

Returns a non-zero value when c is a hexadecimal digit
([0-9][A-F][a-f]).

iswxdigitisxdigit

Returns c converted to a lowercase character if it is an uppercase
character, otherwise c is returned.

towlowertolower

Returns c converted to an uppercase character if it is a lowercase
character, otherwise c is returned.

towuppertoupper

Converts c to a lowercase character, does not check if c really is
an uppercase character. Implemented as macro. This macro
function is not defined in ISO C99.

-_tolower

Converts c to an uppercase character, does not check if c really
is a lowercase character. Implemented as macro. This macro
function is not defined in ISO C99.

-_toupper

Returns a non-zero value when c is in the range of 0 and 127.This
function is not defined in ISO C99.

isascii

47

Libraries

Descriptionwctype.hctype.h

Converts c to an ASCII value (strip highest bit). This function is
not defined in ISO C99.

toascii

5.2.4. errno.h

External variable that holds implementation defined error codes.int errno

The following error codes are defined as macros in errno.h:

EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
EINTR 3 Interrupted system call
EIO 4 I/O error
EBADF 5 Bad file number
EAGAIN 6 No more processes
ENOMEM 7 Not enough core
EACCES 8 Permission denied
EFAULT 9 Bad address
EEXIST 10 File exists
ENOTDIR 11 Not a directory
EISDIR 12 Is a directory
EINVAL 13 Invalid argument
ENFILE 14 File table overflow
EMFILE 15 Too many open files
ETXTBSY 16 Text file busy
ENOSPC 17 No space left on device
ESPIPE 18 Illegal seek
EROFS 19 Read-only file system
EPIPE 20 Broken pipe
ELOOP 21 Too many levels of symbolic links
ENAMETOOLONG 22 File name too long

Floating-point errors

EDOM 23 Argument too large
ERANGE 24 Result too large

Errors returned by printf/scanf

ERR_FORMAT 25 Illegal format string for printf/scanf
ERR_NOFLOAT 26 Floating-point not supported
ERR_NOLONG 27 Long not supported
ERR_NOPOINT 28 Pointers not supported

Encoding errors set by functions like fgetwc, getwc, mbrtowc, etc ...

EILSEQ 29 Invalid or incomplete multibyte or wide character

48

C-to-Hardware Compiler User Manual

Errors returned by RTOS

ECANCELED 30 Operation canceled
ENODEV 31 No such device

5.2.5. fcntl.h

The header file fcntl.h contains the function open(), which calls the low level function _open(), and
definitions of flags used by the low level function _open(). This header file is not defined in ISO C99.

Opens a file a file for reading or writing. Calls _open.open

5.2.6. fenv.h

Contains mechanisms to control the floating-point environment. The functions in this header file are not
implemented.

Stores the current floating-point environment. (Not implemented)fegetenv

Saves the current floating-point environment and installs an environment
that ignores all floating-point exceptions. (Not implemented)

feholdexept

Restores a previously saved (fegetenv or feholdexcept) floating-point
environment. (Not implemented)

fesetenv

Saves the currently raised floating-point exceptions, restores a previously
saved floating-point environment and finally raises the saved exceptions.
(Not implemented)

feupdateenv

Clears the current exception status flags corresponding to the flags specified
in the argument. (Not implemented)

feclearexcept

Stores the current setting of the floating-point status flags. (Not implemented)fegetexceptflag

Raises the exceptions represented in the argument. As a result, other
exceptions may be raised as well.
(Not implemented)

feraiseexcept

Sets the current floating-point status flags.
(Not implemented)

fesetexceptflag

Returns the bitwise-OR of the exception macros corresponding to the
exception flags which are currently set and are specified in the argument.
(Not implemented)

fetestexcept

For each supported exception, a macro is defined. The following exceptions are defined:

FE_DIVBYZERO FE_INEXACT FE_INVALID
FE_OVERFLOW FE_UNDERFLOW FE_ALL_EXCEPT

Returns the current rounding direction, represented as one of the values of
the rounding direction macros.
(Not implemented)

fegetround

Sets the current rounding directions. (Not implemented)fesetround

49

Libraries

Currently no rounding mode macros are implemented.

5.2.7. float.h

The header file float.h defines the characteristics of the real floating-point types float, double and
long double.

float.h used to contain prototypes for the functions copysign(f), isinf(f), isfinite(f),
isnan(f) and scalb(f).These functions have accordingly to the ISO C99 standard been moved
to the header file math.h. See also Section 5.2.14, math.h and tgmath.h.

The following functions are only available for ISO C90:

Copies the sign of the second argument s to the value of the first
argument f and returns the result.

copysignf(float f,float s)

Copies the sign of the second argument s to the value of the first
argument d and returns the result.

copysign(double d,double s)

Test the variable f on being an infinite (IEEE-754) value.isinff(float f)

Test the variable d on being an infinite (IEEE-754) value.isinf(double d);

Test the variable f on being a finite (IEEE-754) value.isfinitef(float f)

Test the variable d on being a finite (IEEE-754) value.isfinite(double d)

Test the variable f on being NaN (Not a Number, IEEE-754) .isnanf(float f)

Test the variable d on being NaN (Not a Number, IEEE-754) .isnan(double d)

Returns f * 2^p for integral values without computing 2^N.scalbf(float f,int p)

Returns d * 2^p for integral values without computing 2^N. (See
also scalbn in Section 5.2.14, math.h and tgmath.h)

scalb(double d,int p)

5.2.8. inttypes.h and stdint.h

The header files stdint.h and inttypes.h provide additional declarations for integer types and have
various characteristics. The stdint.h header file contains basic definitions of integer types of certain
sizes, and corresponding sets of macros. This header file clearly refers to the corresponding sections in
the ISO C99 standard.
The inttypes.h header file includes stdint.h and adds portable formatting and conversion functions.
Below the conversion functions from inttypes.h are listed.

Returns the absolute value of jimaxabs(intmax_t j)

Computes numer/denomand numer % denom.The result is stored
in the quot and rem components of the imaxdiv_t structure type.

imaxdiv(intmax_t numer,
intmax_t denom)

Convert string to maximum sized integer. (Compare strtoll)strtoimax(const char *
restrict nptr, char **
restrict endptr, int base)

50

C-to-Hardware Compiler User Manual

Convert string to maximum sized unsigned integer. (Compare
strtoull)

strtoumax(const char *
restrict nptr, char **
restrict endptr, int base)

Convert wide string to maximum sized integer. (Compare wcstoll)wcstoimax(const wchar_t *
restrict nptr, wchar_t **
restrict endptr, int base)

Convert wide string to maximum sized unsigned integer. (Compare
wcstoull)

wcstoumax(const wchar_t *
restrict nptr, wchar_t **
restrict endptr, int base)

5.2.9. io.h

The header file io.h contains prototypes for low level I/O functions. Definitions are located in the source
file pcls_io.c. This header file is not defined in ISO C99.

Used by the functions close and fclose._close(fd)

Used by all file positioning functions: fgetpos, fseek, fsetpos,
ftell, rewind.

_lseek(fd,offset,whence)

Used by the functions fopen and freopen._open(fd,flags)

Reads a sequence of characters from a file._read(fd,*buff,cnt)

Used by the function remove._unlink(*name)

Writes a sequence of characters to a file._write(fd,*buffer,cnt)

5.2.10. iso646.h

The header file iso646.h adds tokens that can be used instead of regular operator tokens.

#define and &&
#define and_eq &=
#define bitand &
#define bitor |
#define compl ~
#define not !
#define not_eq !=
#define or ||
#define or_eq |=
#define xor ^
#define xor_eq ^=

5.2.11. limits.h

Contains the sizes of integral types, defined as macros.

5.2.12. locale.h

To keep C code reasonable portable across different languages and cultures, a number of facilities are
provided in the header file local.h.

51

Libraries

char *setlocale(int category, const char *locale)

The function above changes locale-specific features of the run-time library as specified by the category
to change and the name of the locale.

The following categories are defined and can be used as input for this function:

LC_ALL 0 LC_NUMERIC 3
LC_COLLATE 1 LC_TIME 4
LC_CTYPE 2 LC_MONETARY 5

struct lconv *localeconv(void)

Returns a pointer to type struct lconv with values appropriate for the formatting of numeric
quantities according to the rules of the current locale. The struct lconv in this header file is
conforming the ISO standard.

5.2.13. malloc.h

The header file malloc.h contains prototypes for memory allocation functions. This include file is not
defined in ISO C99, it is included for backwards compatibility with ISO C90. For ISO C99, the memory
allocation functions are part of stdlib.h. See Section 5.2.22, stdlib.h and wchar.h.

Allocates space for an object with size size.
The allocated space is not initialized. Returns a pointer to the
allocated space.

malloc(size)

Allocates space for n objects with size size.
The allocated space is initialized with zeros. Returns a pointer to
the allocated space.

calloc(nobj,size)

Deallocates the memory space pointed to by ptr which should be
a pointer earlier returned by the malloc or calloc function.

free(*ptr)

Deallocates the old object pointed to by ptr and returns a pointer
to a new object with size size.
The new object cannot have a size larger than the previous object.

realloc(*ptr,size)

5.2.14. math.h and tgmath.h

The header file math.h contains the prototypes for many mathematical functions. Before ISO C99, all
functions were computed using the double type (the float was automatically converted to double, prior to
calculation). In this ISO C99 version, parallel sets of functions are defined for double, float and long
double. They are respectively named function, functionf, functionl. All long type functions, though
declared in math.h, are implemented as the double type variant which nearly always meets the
requirement in embedded applications.

The header file tgmath.h contains parallel type generic math macros whose expansion depends on the
used type. tgmath.h includes math.h and the effect of expansion is that the correct math.h functions
are called. The type generic macro, if available, is listed in the second column of the tables below.

52

C-to-Hardware Compiler User Manual

Trigonometric and hyperbolic functions

Descriptiontgmath.hmath.h

Returns the sine of x.sinsinlsinfsin

Returns the cosine of x.coscoslcosfcos

Returns the tangent of x.tantanltanftan

Returns the arc sine sin-1(x) of x.asinasinlasinfasin

Returns the arc cosine cos-1(x) of x.acosacoslacosfacos

Returns the arc tangent tan-1(x) of x.atanatanlatanfatan

Returns the result of: tan-1(y/x).atan2atan2latan2fatan2

Returns the hyperbolic sine of x.sinhsinhlsinhfsinh

Returns the hyperbolic cosine of x.coshcoshlcoshfcosh

Returns the hyperbolic tangent of x.tanhtanhltanhftanh

Returns the arc hyperbolic sine of x.asinhasinhlasinhfasinh

Returns the non-negative arc hyperbolic cosine of x.acoshacoshlacoshfacosh

Returns the arc hyperbolic tangent of x.atanhatanhlatanhfatanh

Exponential and logarithmic functions

All of these functions are new in ISO C99, except for exp, log and log10.

Descriptiontgmath.hmath.h

Returns the result of the exponential function ex.expexplexpfexp

Returns the result of the exponential function 2x. (Not
implemented)

exp2exp2lexp2fexp2

Returns the result of the exponential function ex-1. (Not
implemented)

expm1expm1lexpm1fexpm1

Returns the natural logarithm ln(x), x>0.loglogllogflog

Returns the base-10 logarithm of x, x>0.log10log10llog10flog10

Returns the base-e logarithm of (1+x). x <> -1. (Not
implemented)

log1plog1pllog1pflog1p

Returns the base-2 logarithm of x.x>0. (Not implemented)log2log2llog2flog2

Returns the signed exponent of x as an integer.x>0. (Not
implemented)

ilogbilogblilogbfilogb

Returns the exponent of x as a signed integer in value in
floating-point notation. x > 0. (Not implemented)

logblogbllogbflogb

53

Libraries

frexp, ldexp, modf, scalbn, scalbln

Descriptiontgmath.hmath.h

Splits a float x into fraction f and exponent n, so that:
f = 0.0 or 0.5 ≤ | f | ≤ 1.0 and f*2n = x. Returns f, stores n.

frexpfrexplfrexpffrexp

Inverse of frexp. Returns the result of x*2n.
(x and n are both arguments).

ldexpldexplldexpfldexp

Splits a float x into fraction f and integer n, so that:
| f | < 1.0 and f+n=x. Returns f, stores n.

-modflmodffmodf

Computes the result of x*FLT_RADIXn. efficiently, not
normally by computing FLT_RADIXn explicitly.

scalbnscalbnlscalbnfscalbn

Same as scalbn but with argument n as long int.scalblnscalblnlscalblnfscalbln

Rounding functions

Descriptiontgmath.hmath.h

Returns the smallest integer not less than x, as a double.ceilceillceilfceil

Returns the largest integer not greater than x, as a double.floorfloorlfloorffloor

Returns the rounded integer value as an int according
to the current rounding direction. See fenv.h. (Not
implemented)

rintrintlrintfrint

Returns the rounded integer value as a long int
according to the current rounding direction. See fenv.h.
(Not implemented)

lrintlrintllrintflrint

Returns the rounded integer value as a long long int
according to the current rounding direction. See fenv.h.
(Not implemented)

llrintlrintllrintfllrint

Returns the rounded integer value as a floating-point
according to the current rounding direction. See fenv.h.
(Not implemented)

nearbyintnearbyintlnearbyintfnearbyint

Returns the nearest integer value of x as int.
(Not implemented)

roundroundlroundfround

Returns the nearest integer value of x as long int.
(Not implemented)

lroundlroundllroundflround

Returns the nearest integer value of x as long long int.
(Not implemented)

llroundllroundllroundfllround

Returns the truncated integer value x. (Not implemented)trunctruncltruncftrunc

Remainder after division

Descriptiontgmath.hmath.h

Returns the remainder r of x-ny. n is chosen as
trunc(x/y). r has the same sign as x.

fmodfmodlfmodffmod

54

C-to-Hardware Compiler User Manual

Descriptiontgmath.hmath.h

Returns the remainder r of x-ny. n is chosen as
trunc(x/y). r may not have the same sign as x. (Not
implemented)

remainderremainderlremainderfremainder

Same as remainder. In addition, the argument *quo is
given a specific value (see ISO). (Not implemented)

remquoremquolremquofremquo

Power and absolute-value functions

Descriptiontgmath.hmath.h

Returns the real cube root of x (=x1/3). (Not implemented)cbrtcbrtlcbrtfcbrt

Returns the absolute value of x (|x|). (abs, labs, llabs,
div, ldiv, lldiv are defined in stdlib.h)

fabsfabslfabsffabs

Floating-point multiply add. Returns x*y+z. (Not
implemented)

fmafmalfmaffma

Returns the square root of x2+y2.hypothypotlhypotfhypot

Returns x raised to the power y (xy).powerpowlpowfpow

Returns the non-negative square root of x. x 0.sqrtsqrtlsqrtfsqrt

Manipulation functions: copysign, nan, nextafter, nexttoward

Descriptiontgmath.hmath.h

Returns the value of x with the sign of y.copysigncopysignllcopysignfcopysign

Returns a quiet NaN, if available, with content indicated
through tagp.
(Not implemented)

-nanlnanfnan

Returns the next representable value in the specified
format after x in the direction of y. Returns y is x=y.
(Not implemented)

nextafternextafterlnextafterfnextafter

Same as nextafter, except that the second argument
in all three variants is of type long double. Returns y if
x=y.
(Not implemented)

nexttowardnexttowardlnexttowardfnexttoward

Positive difference, maximum, minimum

Descriptiontgmath.hmath.h

Returns the positive difference between: |x-y|.
(Not implemented)

fdimfdimlfdimffdim

Returns the maximum value of their arguments.
(Not implemented)

fmaxfmaxlfmaxffmax

Returns the minimum value of their arguments.
(Not implemented)

fminfminlfminffmin

55

Libraries

Error and gamma (Not implemented)

Descriptiontgmath.hmath.h

Computes the error function of x.
(Not implemented)

erferflerfferf

Computes the complementary error function of x.
(Not implemented)

ercerfclerfcferfc

Computes the *loge|Γ(x)|
(Not implemented)

lgammalgammallgammaflgamma

Computes Γ(x)
(Not implemented)

tgammatgammaltgammaftgamma

Comparison macros

The next are implemented as macros. For any ordered pair of numeric values exactly one of the
relationships - less, greater, and equal - is true. These macros are type generic and therefor do not have
a parallel function in tgmath.h. All arguments must be expressions of real-floating type.

Descriptiontgmath.hmath.h

Returns the value of (x) > (y)-isgreater

Returns the value of (x) >= (y)-isgreaterequal

Returns the value of (x) < (y)-isless

Returns the value of (x) <= (y)-islessequal

Returns the value of (x) < (y) || (x) > (y)-islessgreater

Returns 1 if its arguments are unordered, 0 otherwise.-isunordered

Classification macros

The next are implemented as macros. These macros are type generic and therefor do not have a parallel
function in tgmath.h. All arguments must be expressions of real-floating type.

Descriptiontgmath.hmath.h

Returns the class of its argument:
FP_INFINITE, FP_NAN, FP_NORMAL, FP_SUBNORMAL or
FP_ZERO

-fpclassify

Returns a nonzero value if and only if its argument has a finite
value

-isfinite

Returns a nonzero value if and only if its argument has an infinite
value

-isinf

Returns a nonzero value if and only if its argument has NaN value.-isnan

Returns a nonzero value if an only if its argument has a normal
value.

-isnormal

56

C-to-Hardware Compiler User Manual

Descriptiontgmath.hmath.h

Returns a nonzero value if and only if its argument value is
negative.

-signbit

5.2.15. setjmp.h

The current version of the CHC compiler does not support the functions setjmp() and longjmp().

The setjmp and longjmp in this header file implement a primitive form of non-local jumps, which may
be used to handle exceptional situations. This facility is traditionally considered more portable than
signal.h

Records its caller's environment in env and returns 0.int setjmp(jmp_buf
env)

Restores the environment previously saved with a call to setjmp().void longjmp(jmp_buf
env, int status)

5.2.16. signal.h

Signals are possible asynchronous events that may require special processing. Each signal is named by
a number. The following signals are defined:

Receipt of an interactive attention signal1SIGINT

Detection of an invalid function message2SIGILL

An erroneous arithmetic operation (for example, zero divide, overflow)3SIGFPE

An invalid access to storage4SIGSEGV

A termination request sent to the program5SIGTERM

Abnormal termination, such as is initiated by the abort function6SIGABRT

The next function sends the signal sig to the program:

int raise(int sig)

The next function determines how subsequent signals will be handled:

signalfunction *signal (int, signalfunction *);

The first argument specifies the signal, the second argument points to the signal-handler function or has
one of the following values:

Default behavior is usedSIG_DFL

The signal is ignoredSIG_IGN

The function returns the previous value of signalfunction for the specific signal, or SIG_ERR if an
error occurs.

57

Libraries

5.2.17. stdarg.h

The facilities in this header file gives you a portable way to access variable arguments lists, such as
needed for as fprintf and vfprintf. va_copy is new in ISO C99. This header file contains the
following macros:

Returns the value of the next argument in the variable argument list.
It's return type has the type of the given argument type. A next call to
this macro will return the value of the next argument.

va_arg(va_list ap,type)

This macro duplicates the current state of src in dest, creating a
second pointer into the argument list. After this call, va_arg() may be
used on src and dest independently.

va_copy(va_list dest,
va_list src)

This macro must be called after the arguments have been processed.
It should be called before the function using the macro 'va_start' is
terminated.

va_end(va_list ap)

This macro initializes ap. After this call, each call to va_arg() will return
the value of the next argument. In our implementation, va_list cannot
contain any bit type variables. Also the given argument lastarg must
be the last non-bit type argument in the list.

va_start(va_list ap,
lastarg)

5.2.18. stdbool.h

This header file contains the following macro definitions. These names for boolean type and values are
consistent with C++.You are allowed to #undefine or redefine the macros below.

#define bool _Bool
#define true 1
#define false 0
#define __bool_true_false_are_defined 1

5.2.19. stddef.h

This header file defines the types for common use:

Signed integer type of the result of subtracting two pointers.ptrdiff_t

Unsigned integral type of the result of the sizeof operator.size_t

Integer type to represent character codes in large character sets.wchar_t

Besides these types, the following macros are defined:

Expands to 0 (zero).NULL

Expands to an integer constant expression with type size_t that is the offset
in bytes of _member within structure type _type.

offsetof(_type,
_member)

5.2.20. stdint.h

See Section 5.2.8, inttypes.h and stdint.h

58

C-to-Hardware Compiler User Manual

5.2.21. stdio.h and wchar.h

Types

The header file stdio.h contains functions for performing input and output. A number of functions also
have a parallel wide character function or macro, defined in wchar.h. The header file wchar.h also
includes stdio.h.

In the C language, many I/O facilities are based on the concept of streams. The stdio.h header file
defines the data type FILE which holds the information about a stream. A FILE object is created with
the function fopen. The pointer to this object is used as an argument in many of the in this header file.
The FILE object can contain the following information:

• the current position within the stream

• pointers to any associated buffers

• indications of for read/write errors

• end of file indication

The header file also defines type fpos_t as an unsigned long.

Macros

Descriptionstdio.h

Expands to 0 (zero).NULL

Size of the buffer used by the setbuf/setvbuf function: 512BUFSIZ

End of file indicator. Expands to -1.EOF

End of file indicator. Expands to UINT_MAX (defined in limits.h)
NOTE: WEOF need not to be a negative number as long as its value does not
correspond to a member of the wide character set. (Defined in wchar.h).

WEOF

Number of files that can be opened simultaneously: 10FOPEN_MAX

Maximum length of a filename: 100FILENAME_MAX

Expand to an integer expression, suitable for use as argument to the setvbuf function._IOFBF
_IOLBF
_IONBF

Size of the string used to hold temporary file names: 8 (tmpxxxxx)L_tmpnam

Maximum number of unique temporary filenames that can be generated: 0x8000TMP_MAX

Expand to an integer expression, suitable for use as the third argument to the fseek
function.

SEEK_CUR
SEEK_END
SEEK_SET

Expressions of type "pointer to FILE" that point to the FILE objects associated with
standard error, input and output streams.

stderr
stdin
stdout

59

Libraries

File access

Descriptionstdio.h

Opens a file for a given mode. Available modes are:fopen(name,mode)

"r" read; open text file for reading
"w" write; create text file for writing;

if the file already exists, its contents is discarded
"a" append; open existing text file or

create new text file for writing at end of file
"r+" open text file for update; reading and writing
"w+" create text file for update; previous

contents if any is discarded
"a+" append; open or create text file for update,

writes at end of file

Flushes the data stream and closes the specified file that was previously
opened with fopen.

fclose(name)

If stream is an output stream, any buffered but unwritten date is written.
Else, the effect is undefined.

fflush(name)

Similar to fopen, but rather than generating a new value of type FILE *,
the existing value is associated with a new stream.

freopen(name,mode,
stream)

If buffer is NULL, buffering is turned off for the stream. Otherwise, setbuf
is equivalent to:(void) setvbuf(stream,buffer,_IOFBF,BUFSIZ).

setbuf(stream,buffer)

Controls buffering for the stream; this function must be called before reading
or writing. Mode can have the following values:
_IOFBF causes full buffering
_IOLBF causes line buffering of text files
_IONBF causes no buffering.
If buffer is not NULL, it will be used as a buffer; otherwise a buffer will be
allocated. size determines the buffer size.

setvbuf(stream,buffer,mode,
size)

Formatted input/output

The format string of printf related functions can contain plain text mixed with conversion specifiers.
Each conversion specifier should be preceded by a '%' character. The conversion specifier should be
built in order:

• Flags (in any order):

specifies left adjustment of the converted argument.-

a number is always preceded with a sign character.
+ has higher precedence than space.

+

a negative number is preceded with a sign, positive numbers with a space.space

specifies padding to the field width with zeros (only for numbers).0

60

C-to-Hardware Compiler User Manual

specifies an alternate output form. For o, the first digit will be zero. For x or X, "0x" and "0X"
will be prefixed to the number. For e, E, f, g, G, the output always contains a decimal point,
trailing zeros are not removed.

#

• A number specifying a minimum field width. The converted argument is printed in a field with at least
the length specified here. If the converted argument has fewer characters than specified, it will be
padded at the left side (or at the right when the flag '-' was specified) with spaces. Padding to numeric
fields will be done with zeros when the flag '0' is also specified (only when padding left). Instead of a
numeric value, also '*' may be specified, the value is then taken from the next argument, which is
assumed to be of type int.

• A period. This separates the minimum field width from the precision.

• A number specifying the maximum length of a string to be printed. Or the number of digits printed after
the decimal point (only for floating-point conversions). Or the minimum number of digits to be printed
for an integer conversion. Instead of a numeric value, also '*' may be specified, the value is then taken
from the next argument, which is assumed to be of type int.

• A length modifier 'h', 'hh', 'l', 'll', 'L', 'j', 'z' or 't'. 'h' indicates that the argument is to be treated as a short
or unsigned short. 'hh' indicates that the argument is to be treated as a char or unsigned char.
'l' should be used if the argument is a long integer, 'll' for a long long. 'L' indicates that the argument
is a long double. 'j' indicates a pointer to intmax_t or uintmax_t, 'z' indicates a pointer to size_t
and 't' indicates a pointer to ptrdiff_t.

Flags, length specifier, period, precision and length modifier are optional, the conversion character is not.
The conversion character must be one of the following, if a character following '%' is not in the list, the
behavior is undefined:

Printed asCharacter

int, signed decimald, i

int, unsigned octalo

int, unsigned hexadecimal in lowercase or uppercase respectivelyx, X

int, unsigned decimalu

int, single character (converted to unsigned char)c

char *, the characters from the string are printed until a NULL character is found. When the
given precision is met before, printing will also stop

s

doublef

doublee, E

doubleg, G

doublea, A

int *, the number of characters written so far is written into the argument. This should be a
pointer to an integer in default memory. No value is printed.

n

pointerp

No argument is converted, a '%' is printed.%

61

Libraries

printf conversion characters

All arguments to the scanf related functions should be pointers to variables (in default memory) of the
type which is specified in the format string.

The format string can contain :

• Blanks or tabs, which are skipped.

• Normal characters (not '%'), which should be matched exactly in the input stream.

• Conversion specifications, starting with a '%' character.

Conversion specifications should be built as follows (in order) :

• A '*', meaning that no assignment is done for this field.

• A number specifying the maximum field width.

• The conversion characters d, i, n, o, u and x may be preceded by 'h' if the argument is a pointer to
short rather than int, or by 'hh' if the argument is a pointer to char, or by 'l' (letter ell) if the argument
is a pointer to long or by 'll' for a pointer to long long, 'j' for a pointer to intmax_t or uintmax_t,
'z' for a pointer to size_t or 't' for a pointer to ptrdiff_t. The conversion characters e, f, and g
may be preceded by 'l' if the argument is a pointer to double rather than float, and by 'L' for a pointer
to a long double.

• A conversion specifier. '*', maximum field width and length modifier are optional, the conversion character
is not. The conversion character must be one of the following, if a character following '%' is not in the
list, the behavior is undefined.

Length specifier and length modifier are optional, the conversion character is not.The conversion character
must be one of the following, if a character following '%' is not in the list, the behavior is undefined.

Scanned asCharacter

int, signed decimal.d

int, the integer may be given octal (i.e. a leading 0 is entered) or hexadecimal (leading "0x"
or "0X"), or just decimal.

i

int, unsigned octal.o

int, unsigned decimal.u

int, unsigned hexadecimal in lowercase or uppercase.x

single character (converted to unsigned char).c

char *, a string of non white space characters. The argument should point to an array of
characters, large enough to hold the string and a terminating NULL character.

s

floatf, F

floate, E

floatg, G

floata, A

62

C-to-Hardware Compiler User Manual

Scanned asCharacter

int *, the number of characters written so far is written into the argument. No scanning is done.n

pointer; hexadecimal value which must be entered without 0x- prefix.p

Matches a string of input characters from the set between the brackets. A NULL character is
added to terminate the string. Specifying []...] includes the ']' character in the set of scanning
characters.

[...]

Matches a string of input characters not in the set between the brackets. A NULL character
is added to terminate the string. Specifying [^]...] includes the ']' character in the set.

[^...]

Literal '%', no assignment is done.%

scanf conversion characters

Descriptionwchar.hstdio.h

Performs a formatted read from the given stream.
Returns the number of items converted
successfully.

fwscanf(stream,
format, ...)

fscanf(stream,
format, ...)

Performs a formatted read from stdin. Returns
the number of items converted successfully.

wscanf(format, ...)scanf(format,...)

Performs a formatted read from the string s.
Returns the number of items converted
successfully.

swscanf(*s, format,
...)

sscanf(*s, format,
...)

Same as fscanf/fwscanf, but extra arguments
are given as variable argument list arg. (See
Section 5.2.17, stdarg.h)

vfwscanf(stream,
format, arg)

vfscanf(stream,
format, arg)

Same as sscanf/swscanf, but extra arguments
are given as variable argument list arg. (See
Section 5.2.17, stdarg.h)

vwscanf(format, arg)vscanf(format, arg)

Same as scanf/wscanf, but extra arguments
are given as variable argument list arg. (See
Section 5.2.17, stdarg.h)

vswscanf(*s, format,
arg)

vsscanf(*s, format,
arg)

Performs a formatted write to the given stream.
Returns EOF/WEOF on error.

fwprintf(stream,
format, ...)

fprintf(stream,
format, ...)

Performs a formatted write to the stream stdout.
Returns EOF/WEOF on error.

wprintf(format, ...)printf(format, ...)

Performs a formatted write to string s. Returns
EOF/WEOF on error.

-sprintf(*s, format,
...)

Same as sprintf, but n specifies the maximum
number of characters (including the terminating
null character) to be written.

swprintf(*s, n,
format, ...)

snprintf(*s, n,
format, ...)

Same as fprintf/fwprintf, but extra
arguments are given as variable argument list
arg. (See Section 5.2.17, stdarg.h)

vfwprintf(stream,
format, arg)

vfprintf(stream,
format, arg)

63

Libraries

Descriptionwchar.hstdio.h

Same as printf/wprintf, but extra arguments
are given as variable argument list arg. (See
Section 5.2.17, stdarg.h)

vwprintf(format,
arg)

vprintf(format, arg)

Same as sprintf/swprintf, but extra
arguments are given as variable argument list
arg. (See Section 5.2.17, stdarg.h)

vswprintf(*s,
format, arg)

vsprintf(*s, format,
arg)

Character input/output

Descriptionwchar.hstdio.h

Reads one character from stream. Returns the
read character, or EOF/WEOF on error.

fgetwc(stream)fgetc(stream)

Same as fgetc/fgetwc except that is
implemented as a macro.
NOTE: Currently #defined as
getchar()/getwchar() because FILE I/O is
not supported. Returns the read character, or
EOF/WEOF on error.

getwc(stream)getc(stream)

Reads one character from the stdin stream.
Returns the character read or EOF/WEOF on
error. Implemented as macro.

getwchar(stdin)getchar(stdin)

Reads at most the next n-1 characters from the
stream into array s until a newline is found.
Returns s or NULL or EOF/WEOF on error.

fgetws(*s, n,
stream)

fgets(*s, n, stream)

Reads at most the next n-1 characters from the
stdin stream into array s. A newline is ignored.
Returns s or NULL or EOF/WEOF on error.

-gets(*s, n, stdin)

Pushes character c back onto the input stream.
Returns EOF/WEOF on error.

ungetwc(c, stream)ungetc(c, stream)

Put character c onto the given stream. Returns
EOF/WEOF on error.

fputwc(c, stream)fputc(c, stream)

Same as fpuc/fputwc except that is
implemented as a macro.

putwc(c, stream)putc(c, stream)

Put character c onto the stdout stream. Returns
EOF/WEOF on error.
Implemented as macro.

putwchar(c, stdout)putchar(c, stdout)

Writes string s to the given stream. Returns
EOF/WEOF on error.

fputws(*s, stream)fputs(*s, stream)

Writes string s to the stdout stream. Returns
EOF/WEOF on error.

-puts(*s)

64

C-to-Hardware Compiler User Manual

Direct input/output

Descriptionstdio.h

Reads nobj members of size bytes from the given stream into
the array pointed to by ptr. Returns the number of elements
successfully read.

fread(ptr,size,nobj,stream)

Writes nobj members of size bytes from to the array pointed to
by ptr to the given stream. Returns the number of elements
successfully written.

fwrite(ptr,size,nobj,stream)

Random access

Descriptionstdio.h

Sets the position indicator for stream.fseek(stream, offset,
origin)

When repositioning a binary file, the new position origin is given by the following macros:

SEEK_SET 0 offset characters from the beginning of the file
SEEK_CUR 1 offset characters from the current position in the file
SEEK_END 2 offset characters from the end of the file

Returns the current file position for stream, or -1L on error.ftell(stream)

Sets the file position indicator for the stream to the beginning of the file. This
function is equivalent to:
(void) fseek(stream,0L,SEEK_SET);
clearerr(stream);

rewind(stream)

Stores the current value of the file position indicator for stream in the object
pointed to by pos.

fgetpos(stream,pos)

Positions stream at the position recorded by fgetpos in *pos.fsetpos(stream,pos)

Operations on files

Descriptionstdio.h

Removes the named file, so that a subsequent attempt to open it fails. Returns a
non-zero value if not successful.

remove(file)

Changes the name of the file from old name to new name. Returns a non-zero
value if not successful.

rename(old,new)

Creates a temporary file of the mode "wb+" that will be automatically removed when
closed or when the program terminates normally. Returns a file pointer.

tmpfile()

Creates new file names that do not conflict with other file names currently in use.
The new file name is stored in a buffer which must have room for L_tmpnam
characters. Returns a pointer to the temporary name. The file names are created
in the current directory and all start with "tmp". At most TMP_MAX unique file names
can be generated.

tmpnam(buffer)

65

Libraries

Error handling

Descriptionstdio.h

Clears the end of file and error indicators for stream.clearerr(stream)

Returns a non-zero value if the error indicator for stream is set.ferror(stream)

Returns a non-zero value if the end of file indicator for stream is set.feof(stream)

Prints s and the error message belonging to the integer errno. (See
Section 5.2.4, errno.h)

perror(*s)

5.2.22. stdlib.h and wchar.h

The header file stdlib.h contains general utility functions which fall into the following categories (Some
have parallel wide-character, declared in wchar.h)

• Numeric conversions

• Random number generation

• Memory management

• Environment communication

• Searching and sorting

• Integer arithmetic

• Multibyte/wide character and string conversions.

Macros

Predefined exit codes that can be used in the exit function.EXIT_SUCCES
0
EXIT_FAILURE
1

Highest number that can be returned by the rand/srand function.RAND_MAX
32767

Maximum number of bytes in a multibyte character for the extended character set
specified by the current locale (category LC_CTYPE, see Section 5.2.12, locale.h).

MB_CUR_MAX 1

Numeric conversions

The following functions convert the initial portion of a string *s to a double, int, long int and long
long int value respectively.

double atof(*s)
int atoi(*s)
long atol(*s)
long long atoll(*s)

66

C-to-Hardware Compiler User Manual

The following functions convert the initial portion of the string *s to a float, double and long double value
respectively. *endp will point to the first character not used by the conversion.

wchar.hstdlib.h

float wcstof(*s,**endp)
double wcstod(*s,**endp)
long double wcstold(*s,**endp)

float strtof(*s,**endp)
double strtod(*s,**endp)
long double strtold(*s,**endp)

The following functions convert the initial portion of the string *s to a long, long long, unsigned
long and unsigned long long respectively. Base specifies the radix. *endp will point to the first
character not used by the conversion.

wchar.hstdlib.h

long wcstol (*s,**endp,base)
long long wcstoll
 (*s,**endp,base)
unsigned long wcstoul
 (*s,**endp,base)
unsigned long long wcstoull
 (*s,**endp,base)

long strtol (*s,**endp,base)
long long strtoll
 (*s,**endp,base)
unsigned long strtoul
 (*s,**endp,base)
unsigned long long strtoull
 (*s,**endp,base)

Random number generation

Returns a pseudo random integer in the range 0 to RAND_MAX.rand

Same as rand but uses seed for a new sequence of pseudo random numbers.srand(seed)

Memory management

Allocates space for an object with size size.
The allocated space is not initialized. Returns a pointer to the allocated space.

malloc(size)

Allocates space for n objects with size size.
The allocated space is initialized with zeros. Returns a pointer to the allocated
space.

calloc(nobj,size)

Deallocates the memory space pointed to by ptr which should be a pointer
earlier returned by the malloc or calloc function.

free(*ptr)

Deallocates the old object pointed to by ptr and returns a pointer to a new
object with size size.
The new object cannot have a size larger than the previous object.

realloc(*ptr,size)

Environment communication

Causes abnormal program termination. If the signal SIGABRT is caught, the
signal handler may take over control. (See Section 5.2.16, signal.h).

abort()

func points to a function that is called (without arguments) when the program
normally terminates.

atexit(*func)

67

Libraries

Causes normal program termination. Acts as if main() returns with status as
the return value. Status can also be specified with the predefined macros
EXIT_SUCCES or EXIT_FAILURE.

exit(status)

Same as exit, but not registered by the atexit function or signal handlers
registered by the signal function are called.

_Exit(status)

Searches an environment list for a string s. Returns a pointer to the contents
of s.
NOTE: this function is not implemented because there is no OS.

getenv(*s)

Passes the string s to the environment for execution.
NOTE: this function is not implemented because there is no OS.

system(*s)

Searching and sorting

This function searches in an array of n members, for the object pointed to by
key. The initial base of the array is given by base. The size of each member
is specified by size. The given array must be sorted in ascending order,
according to the results of the function pointed to by cmp. Returns a pointer
to the matching member in the array, or NULL when not found.

bsearch(*key,
*base, n, size,
*cmp)

This function sorts an array of n members using the quick sort algorithm. The
initial base of the array is given by base. The size of each member is specified
by size. The array is sorted in ascending order, according to the results of the
function pointed to by cmp.
Not implemented because of recursion.

qsort(*base, n,
size, *cmp)

Integer arithmetic

Compute the absolute value of an int, long int, and long long int j
respectively.

int abs(j)
long labs(j)
long long llabs(j)

Compute x/y and x%y in a single operation. X and y have respectively type
int, long int and long long int. The result is stored in the members
quot and rem of struct div_t, ldiv_t and lldiv_t which have the
same types.

div_t div(x,y)
ldiv_t ldiv(x,y)
lldiv_t lldiv(x,y)

Multibyte/wide character and string conversions

Determines the number of bytes in the multi-byte character pointed to by s. At
most n characters will be examined. (See also mbrlen in Section 5.2.25,
wchar.h).

mblen(*s,n)

Converts the multi-byte character in s to a wide-character code and stores it
in pwc. At most n characters will be examined.

mbtowc(*pwc,*s,n)

Converts the wide-character wc into a multi-byte representation and stores it
in the string pointed to by s. At most MB_CUR_MAX characters are stored.

wctomb(*s,wc)

Converts a sequence of multi-byte characters in the string pointed to by s into
a sequence of wide characters and stores at most n wide characters into the
array pointed to by pwcs. (See also mbsrtowcs in Section 5.2.25, wchar.h).

mbstowcs(*pwcs,*s,n)

68

C-to-Hardware Compiler User Manual

Converts a sequence of wide characters in the array pointed to by pwcs into
multi-byte characters and stores at most n multi-byte characters into the string
pointed to by s. (See also wcsrtowmb in Section 5.2.25, wchar.h).

wcstombs(*s,*pwcs,n)

5.2.23. string.h and wchar.h

This header file provides numerous functions for manipulating strings. By convention, strings in C are
arrays of characters with a terminating null character. Most functions therefore take arguments of type
*char. However, many functions have also parallel wide-character functions which take arguments of
type *wchar_t. These functions are declared in wchar.h.

Copying and concatenation functions

Descriptionwchar.hstring.h

Copies n characters from *s2 into *s1 and returns *s1. If
*s1 and *s2 overlap the result is undefined.

wmemcpy(*s1,*s2,n)memcpy(*s1,*s2,n)

Same as memcpy, but overlapping strings are handled
correctly. Returns *s1.

wmemmove(*s1,*s2,n)memmove(*s1,*s2,n)

Copies *s2 into *s1 and returns *s1. If *s1 and *s2 overlap
the result is undefined.

wcscpy(*s1,*s2)strcpy(*s1,*s2)

Copies not more than n characters from *s2 into *s1 and
returns *s1. If *s1 and *s2 overlap the result is undefined.

wcsncpy(*s1,*s2,n)strncpy(*s1,*s2,n)

Appends a copy of *s2 to *s1 and returns *s1. If *s1 and
*s2 overlap the result is undefined.

wcscat(*s1,*s2)strcat(*s1,*s2)

Appends not more than n characters from *s2 to *s1 and
returns *s1. If *s1 and *s2 overlap the result is undefined.

wcsncat(*s1,*s2,n)strncat(*s1,*s2,n)

Comparison functions

Descriptionwchar.hstring.h

Compares the first n characters of *s1 to the first n
characters of *s2. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or > 0 if *s1 > *s2.

wmemcmp(*s1,*s2,n)memcmp(*s1,*s2,n)

Compares string *s1 to *s2. Returns < 0 if *s1 < *s2, 0 if *s1
= = *s2, or > 0 if *s1 > *s2.

wcscmp(*s1,*s2)strcmp(*s1,*s2)

Compares the first n characters of *s1 to the first n
characters of *s2. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or > 0 if *s1 > *s2.

wcsncmp(*s1,*s2,n)strncmp(*s1,*s2,n)

Performs a local-specific comparison between string *s1
and string *s2 according to the LC_COLLATE category of
the current locale. Returns < 0 if *s1 < *s2, 0 if *s1 = = *s2,
or > 0 if *s1 > *s2. (See Section 5.2.12, locale.h)

wcscoll(*s1,*s2)strcoll(*s1,*s2)

69

Libraries

Descriptionwchar.hstring.h

Transforms (a local) string *s2 so that a comparison
between transformed strings with strcmp gives the same
result as a comparison between non-transformed strings
with strcoll. Returns the transformed string *s1.

wcsxfrm(*s1,*s2,n)strxfrm(*s1,*s2,n)

Search functions

Descriptionwchar.hstring.h

Checks the first n characters of *s on the occurrence of
character c. Returns a pointer to the found character.

wmemchr(*s,c,n)memchr(*s,c,n)

Returns a pointer to the first occurrence of character c in
*s or the null pointer if not found.

wcschr(*s,c)strchr(*s,c)

Returns a pointer to the last occurrence of character c in *s
or the null pointer if not found.

wcsrchr(*s,c)strrchr(*s,c)

Searches *s for a sequence of characters specified in *set.
Returns the length of the first sequence found.

wcsspn(*s,*set)strspn(*s,*set)

Searches *s for a sequence of characters not specified in
*set. Returns the length of the first sequence found.

wcscspn(*s,*set)strcspn(*s,*set)

Same as strspn/wcsspn but returns a pointer to the first
character in *s that also is specified in *set.

wcspbrk(*s,*set)strpbrk(*s,*set)

Searches for a substring *sub in *s. Returns a pointer to the
first occurrence of *sub in *s.

wcsstr(*s,*sub)strstr(*s,*sub)

A sequence of calls to this function breaks the string *s into
a sequence of tokens delimited by a character specified in
*dlm. The token found in *s is terminated with a null
character. Returns a pointer to the first position in *s of the
token.

wcstok(*s,*dlm)strtok(*s,*dlm)

Miscellaneous functions

Descriptionwchar.hstring.h

Fills the first n bytes of *s with character c and returns *s.wmemset(*s,c,n)memset(*s,c,n)

Typically, the values for errno come from int errno. This
function returns a pointer to the associated error message.
(See also Section 5.2.4, errno.h)

-strerror(errno)

Returns the length of string *s.wcslen(*s)strlen(*s)

5.2.24. time.h and wchar.h

The header file time.h provides facilities to retrieve and use the (calendar) date and time, and the
process time. Time can be represented as an integer value, or can be broken-down in components. Two
arithmetic data types are defined which are capable of holding the integer representation of times:

70

C-to-Hardware Compiler User Manual

clock_t unsigned long long
time_t unsigned long

The type struct tm below is defined according to ISO C99 with one exception: this implementation
does not support leap seconds. The struct tm type is defines as follows:

struct tm
{
 int tm_sec; /* seconds after the minute - [0, 59] */
 int tm_min; /* minutes after the hour - [0, 59] */
 int tm_hour; /* hours since midnight - [0, 23] */
 int tm_mday; /* day of the month - [1, 31] */
 int tm_mon; /* months since January - [0, 11] */
 int tm_year; /* year since 1900 */
 int tm_wday; /* days since Sunday - [0, 6] */
 int tm_yday; /* days since January 1 - [0, 365] */
 int tm_isdst; /* Daylight Saving Time flag */
};

Time manipulation

Returns the application's best approximation to the processor time used by the
program since it was started. This low-level routine is not implemented because it
strongly depends on the hardware. To determine the time in seconds, the result of
clock should be divided by the value defined by CLOCKS_PER_SEC.

clock

Returns the difference t1-t0 in seconds.difftime(t1,t0)

Converts the broken-down time in the structure pointed to by tp, to a value of type
time_t. The return value has the same encoding as the return value of the time
function.

mktime(tm *tp)

Returns the current calendar time. This value is also assigned to *timer.time(*timer)

Time conversion

Converts the broken-down time in the structure pointed to by tp into a string in the
form Mon Jan 21 16:15:14 2004\n\0. Returns a pointer to this string.

asctime(tm *tp)

Converts the calender time pointed to by timer to local time in the form of a string.
This is equivalent to: asctime(localtime(timer))

ctime(*timer)

Converts the calender time pointed to by timer to the broken-down time, expressed
as UTC. Returns a pointer to the broken-down time.

gmtime(*timer)

Converts the calendar time pointed to by timer to the broken-down time, expressed
as local time. Returns a pointer to the broken-down time.

localtime(*timer)

Formatted time

The next function has a parallel function defined in wchar.h:

71

Libraries

wchar.htime.h

wstrftime(*s,smax,*fmt,tm *tp)strftime(*s,smax,*fmt,tm
*tp)

Formats date and time information from struct tm *tp into *s according to the specified format *fmt.
No more than smax characters are placed into *s. The formatting of strftime is locale-specific using
the LC_TIME category (see Section 5.2.12, locale.h).

You can use the next conversion specifiers:

abbreviated weekday name%a

full weekday name%A

abbreviated month name%b

full month name%B

locale-specific date and time representation (same as %a %b %e %T %Y)%c

last two digits of the year%C

day of the month (01-31)%d

same as %m/%d/%y%D

day of the month (1-31), with single digits preceded by a space%e

ISO 8601 date format: %Y-%m-%d%F

last two digits of the week based year (00-99)%g

week based year (0000–9999)%G

same as %b%h

hour, 24-hour clock (00-23)%H

hour, 12-hour clock (01-12)%I

day of the year (001-366)%j

month (01-12)%m

minute (00-59)%M

replaced by newline character%n

locale's equivalent of AM or PM%p

locale's 12-hour clock time; same as %I:%M:%S %p%r

same as %H:%M%R

second (00-59)%S

replaced by horizontal tab character%t

ISO 8601 time format: %H:%M:%S%T

ISO 8601 weekday number (1-7), Monday as first day of the week%u

week number of the year (00-53), week 1 has the first Sunday%U

ISO 8601 week number (01-53) in the week-based year%V

weekday (0-6, Sunday is 0)%w

72

C-to-Hardware Compiler User Manual

week number of the year (00-53), week 1 has the first Monday%W

local date representation%x

local time representation%X

year without century (00-99)%y

year with century%Y

ISO 8601 offset of time zone from UTC, or nothing%z

time zone name, if any%Z

%%%

5.2.25. wchar.h

Many functions in wchar.h represent the wide-character variant of other functions so these are discussed
together. (See Section 5.2.21, stdio.h and wchar.h, Section 5.2.22, stdlib.h and wchar.h, Section 5.2.23,
string.h and wchar.h and Section 5.2.24, time.h and wchar.h).

The remaining functions are described below. They perform conversions between multi-byte characters
and wide characters. In these functions, ps points to struct mbstate_t which holds the conversion state
information necessary to convert between sequences of multibyte characters and wide characters:

typedef struct
{
 wchar_t wc_value; /* wide character value solved
 so far */
 unsigned short n_bytes; /* number of bytes of solved
 multibyte */
 unsigned short encoding; /* encoding rule for wide
 character <=> multibyte
 conversion */
} mbstate_t;

When multibyte characters larger than 1 byte are used, this struct will be used to store the conversion
information when not all the bytes of a particular multibyte character have been read from the source. In
this implementation, multi-byte characters are 1 byte long (MB_CUR_MAX and MB_LEN_MAX are defined
as 1) and this will never occur.

Determines whether the object pointed to by ps, is an initial conversion
state. Returns a non-zero value if so.

mbsinit(*ps)

Restartable version of mbstowcs. See Section 5.2.22, stdlib.h and
wchar.h.The initial conversion state is specified by ps.The input sequence
of multibyte characters is specified indirectly by src.

mbsrtowcs(*pwcs,**src,n,*ps)

Restartable version of wcstombs. See Section 5.2.22, stdlib.h and
wchar.h. The initial conversion state is specified by ps. The input wide
string is specified indirectly by src.

wcsrtombs(*s,**src,n,*ps)

Converts a multibyte character *s to a wide character *pwc according to
conversion state ps. See also mbtowc in Section 5.2.22, stdlib.h and
wchar.h.

mbrtowc(*pwc,*s,n,*ps)

73

Libraries

Converts a wide character wc to a multi-byte character according to
conversion state ps and stores the multi-byte character in *s.

wcrtomb(*s,wc,*ps)

Returns the wide character corresponding to character c. Returns WEOF
on error.

btowc(c)

Returns the multi-byte character corresponding to the wide character c.
The returned multi-byte character is represented as one byte. Returns
EOF on error.

wctob(c)

Inspects up to n bytes from the string *s to see if those characters
represent valid multibyte characters, relative to the conversion state held
in *ps.

mbrlen(*s,n,*ps)

5.2.26. wctype.h

Most functions in wctype.h represent the wide-character variant of functions declared in ctype.h and
are discussed in Section 5.2.3, ctype.h and wctype.h. In addition, this header file provides extensible,
locale specific functions and wide character classification.

Constructs a value of type wctype_t that describes a class of wide characters
identified by the string *property. If property identifies a valid class of wide characters
according to the LC_TYPE category (see Section 5.2.12, locale.h) of the current
locale, a non-zero value is returned that can be used as an argument in the
iswctype function.

wctype(*property)

Tests whether the wide character wc is a member of the class represented by
wctype_t desc. Returns a non-zero value if tested true.

iswctype(wc,desc)

Equivalent to locale specific testFunction

iswctype(wc,wctype("alnum"))iswalnum(wc)

iswctype(wc,wctype("alpha"))iswalpha(wc)

iswctype(wc,wctype("cntrl"))iswcntrl(wc)

iswctype(wc,wctype("digit"))iswdigit(wc)

iswctype(wc,wctype("graph"))iswgraph(wc)

iswctype(wc,wctype("lower"))iswlower(wc)

iswctype(wc,wctype("print"))iswprint(wc)

iswctype(wc,wctype("punct"))iswpunct(wc)

iswctype(wc,wctype("space"))iswspace(wc)

iswctype(wc,wctype("upper"))iswupper(wc)

iswctype(wc,wctype("xdigit"))iswxditig(wc)

Constructs a value of type wctype_t that describes a mapping between wide
characters identified by the string *property. If property identifies a valid mapping
of wide characters according to the LC_TYPE category (see Section 5.2.12, locale.h)
of the current locale, a non-zero value is returned that can be used as an argument
in the towctrans function.

wctrans(*property)

74

C-to-Hardware Compiler User Manual

Transforms wide character wc into another wide-character, described by desc.towctrans(wc,desc)

Equivalent to locale specific transformationFunction

towctrans(wc,wctrans("tolower")towlower(wc)

towctrans(wc,wctrans("toupper")towupper(wc)

5.3. C Library Reentrancy

The current version of the CHC compiler does not support reentrancy.

Some of the functions in the C library are reentrant, others are not. The table below shows the functions
in the C library, and whether they are reentrant or not. A dash means that the function is reentrant. Note
that some of the functions are not reentrant because they set the global variable 'errno' (or call other
functions that eventually set 'errno'). If your program does not check this variable and errno is the only
reason for the function not being reentrant, these functions can be assumed reentrant as well.

The explanation of the cause why a function is not reentrant sometimes refers to a footnote because the
explanation is to lengthy for the table.

Not reentrant becauseFunction

Uses global File System Simulation buffer, fss_buffer_close

Uses I/O functions which modify iob[]. See (1)._doflt

Uses indirect access to static iob[] array. See (1)._doprint

Uses indirect access to iob[] and calls ungetc (access to local static
ungetc[] buffer). See (1).

_doscan

See exit._Exit

Uses iob[]. See (1)._filbuf

Uses iob[]. See (1)._flsbuf

Uses iob[]. See (1)._getflt

Defines static iob[]. See (1)._iob

Uses global File System Simulation buffer, _fss_buffer_lseek

Uses global File System Simulation buffer, _fss_buffer_open

Uses global File System Simulation buffer, _fss_buffer_read

Uses global File System Simulation buffer, _fss_buffer_unlink

Uses global File System Simulation buffer, _fss_buffer_write

Calls exitabort

-abs labs llabs

Uses global File System Simulation buffer, _fss_bufferaccess

Sets errno.acos acosf acosl

Sets errno via calls to other functions.acosh acoshf acoshl

asctime defines static array for broken-down time string.asctime

75

Libraries

Not reentrant becauseFunction

Sets errno.asin asinf asinl

Sets errno via calls to other functions.asinh asinhf asinhl

-atan atanf atanl

-atan2 atan2f atan2l

Sets errno via calls to other functions.atanh atanhf atanhl

atexit defines static array with function pointers to execute at exit of
program.

atexit

-atof

-atoi

-atol

-bsearch

-btowc

Sets errno via calls to other functions.cabs cabsf cabsl

Sets errno via calls to other functions.cacos cacosf cacosl

Sets errno via calls to other functions.cacosh cacosh cfacoshl

calloc uses static buffer management structures. See malloc (5).calloc

-carg cargf cargl

Sets errno via calls to other functions.casin casinf casinl

Sets errno via calls to other functions.casinh casinh cfasinhl

Sets errno via calls to other functions.catan catanf catanl

Sets errno via calls to other functions.catanh catanhf catanhl

(Not implemented)cbrt cbrtf cbrtl

Sets errno via calls to other functions.ccos ccosf ccosl

Sets errno via calls to other functions.ccosh ccoshf ccoshl

-ceil ceilf ceill

Sets errno via calls to other functions.cexp cexpf cexpl

Uses global File System Simulation buffer, fss_bufferchdir

-cimag cimagf cimagl

Calls fclose. See (1)cleanup

Modifies iob[]. See (1)clearerr

-clock

Sets errno via calls to other functions.clog clogf clogl

Calls _closeclose

-conj conjf conjl

-copysign copysignf
copysignl

76

C-to-Hardware Compiler User Manual

Not reentrant becauseFunction

-cos cosf cosl

cosh calls exp(), which sets errno. If errno is discarded, cosh is
reentrant.

cosh coshf coshl

Sets errno via calls to other functions.cpow cpowf cpowl

-cproj cprojf cprojl

-creal crealf creall

Sets errno via calls to other functions.csin csinf csinl

Sets errno via calls to other functions.csinh csinhf csinhl

Sets errno via calls to other functions.csqrt csqrtf csqrtl

Sets errno via calls to other functions.ctan ctanf ctanl

Sets errno via calls to other functions.ctanh ctanhf ctanhl

Calls asctimectime

-difftime

-div ldiv lldiv

(Not implemented)erf erfl erff

(Not implemented)erfc erfcf erfcl

Calls fclose indirectly which uses iob[] calls functions in _atexit
array. See (1). To make exit reentrant kernel support is required.

exit

Sets errno.exp expf expl

(Not implemented)exp2 exp2f exp2l

(Not implemented)expm1 expm1f expm1l

-fabs fabsf fabsl

Uses values in iob[]. See (1).fclose

(Not implemented)fdim fdimf fdiml

(Not implemented)feclearexcept

(Not implemented)fegetenv

(Not implemented)fegetexceptflag

(Not implemented)fegetround

(Not implemented)feholdexept

Uses values in iob[]. See (1).feof

(Not implemented)feraiseexcept

Uses values in iob[]. See (1).ferror

(Not implemented)fesetenv

(Not implemented)fesetexceptflag

(Not implemented)fesetround

(Not implemented)fetestexcept

77

Libraries

Not reentrant becauseFunction

(Not implemented)feupdateenv

Modifies iob[]. See (1).fflush

Uses pointer to iob[]. See (1).fgetc fgetwc

Sets the variable errno and uses pointer to iob[]. See (1) / (2).fgetpos

Uses iob[]. See (1).fgets fgetws

-floor floorf floorl

(Not implemented)fma fmaf fmal

(Not implemented)fmax fmaxf fmaxl

(Not implemented)fmin fminf fminl

-fmod fmodf fmodl

Uses iob[] and calls malloc when file open for buffered IO. See (1)fopen

-fpclassify

Uses iob[]. See (1).fprintf fwprintf

Uses iob[]. See (1).fputc fputwc

Uses iob[]. See (1).fputs fputws

Calls fgetc. See (1).fread

free uses static buffer management structures. See malloc (5).free

Modifies iob[]. See (1).freopen

-frexp frexpf frexpl

Uses iob[]. See (1)fscanf fwscanf

Uses iob[] and calls _lseek. Accesses ungetc[] array. See (1).fseek

Uses iob[] and sets errno. See (1) / (2).fsetpos

(Not implemented)fstat

Uses iob[] and sets errno. Calls _lseek. See (1) / (2).ftell

Uses iob[]. See (1).fwrite

Uses iob[]. See (1).getc getwc

Uses iob[]. See (1).getchar getwchar

Uses global File System Simulation buffer, _fss_buffergetcwd

Skeleton only.getenv

Uses iob[]. See (1).gets getws

gmtime defines static structuregmtime

Sets errno via calls to other functions.hypot hypotf hypotl

(Not implemented)ilogb ilogbf ilogbl

-imaxabs

-imaxdiv

78

C-to-Hardware Compiler User Manual

Not reentrant becauseFunction

-isalnum iswalnum

-isalpha iswalpha

-isascii iswascii

-iscntrl iswcntrl

-isdigit iswdigit

-isfinite

-isgraph iswgraph

-isgreater

-isgreaterequal

-isinf

-isless

-islessequal

-islessgreater

-islower iswlower

-isnan

-isnormal

-isprint iswprint

-ispunct iswpunct

-isspace iswspace

-isunordered

-isupper iswupper

-iswalnum

-iswalpha

-iswcntrl

-iswctype

-iswdigit

-iswgraph

-iswlower

-iswprint

-iswpunct

-iswspace

-iswupper

-iswxditig

-isxdigit iswxdigit

Sets errno. See (2).ldexp ldexpf ldexpl

79

Libraries

Not reentrant becauseFunction

(Not implemented)lgamma lgammaf lgammal

(Not implemented)llrint lrintf lrintl

(Not implemented)llround llroundf llroundl

N.A.; skeleton functionlocaleconv

-localtime

Sets errno. See (2).log logf logl

Sets errno via calls to other functions.log10 log10f log10l

(Not implemented)log1p log1pf log1pl

(Not implemented)log2 log2f log2l

(Not implemented)logb logbf logbl

-longjmp

(Not implemented)lrint lrintf lrintl

(Not implemented)lround lroundf lroundl

Calls _lseeklseek

(Not implemented)lstat

Needs kernel support. See (5).malloc

N.A., skeleton functionmblen

Sets errno.mbrlen

Sets errno.mbrtowc

-mbsinit

Sets errno.mbsrtowcs

N.A., skeleton functionmbstowcs

N.A., skeleton functionmbtowc

-memchr wmemchr

-memcmp wmemcmp

-memcpy wmemcpy

-memmove wmemmove

-memset wmemset

-mktime

-modf modff modfl

(Not implemented)nan nanf nanl

(Not implemented)nearbyint nearbyintf
nearbyintl

(Not implemented)nextafter nextafterf
nextafterl

80

C-to-Hardware Compiler User Manual

Not reentrant becauseFunction

(Not implemented)nexttoward nexttowardf
nexttowardl

-offsetof

Calls _openopen

Uses errno. See (2)perror

Sets errno. See (2)pow powf powl

Uses iob[]. See (1)printf wprintf

Uses iob[]. See (1)putc putwc

Uses iob[]. See (1)putchar putwchar

Uses iob[]. See (1)puts

-qsort

Updates the signal handler tableraise

Uses static variable to remember latest random number. Must
diverge from ANSI standard to define reentrant rand. See (4).

rand

Calls _readread

See malloc (5).realloc

(Not implemented)remainder remainderf
remainderl

N.A; skeleton only.remove

(Not implemented)remquo remquof remquol

N.A; skeleton only.rename

Eventually calls _lseekrewind

(Not implemented)rint rintf rintl

(Not implemented)round roundf roundl

-scalbln scalblnf scalblnl

-scalbn scalbnf scalbnl

Uses iob[], calls _doscan. See (1).scanf wscanf

Sets iob[]. See (1).setbuf

-setjmp

N.A.; skeleton functionsetlocale

Sets iob and calls malloc. See (1) / (5).setvbuf

Updates the signal handler tablesignal

-signbit

-sin sinf sinl

Sets errno via calls to other functions.sinh sinhf sinhl

Sets errno. See (2).snprintf swprintf

81

Libraries

Not reentrant becauseFunction

Sets errno. See (2).sprintf

Sets errno. See (2).sqrt sqrtf sqrtl

See randsrand

Sets errno via calls to other functions.sscanf swscanf

Uses global File System Simulation buffer, _fss_bufferstat

-strcat wcscat

-strchr wcschr

-strcmp wcscmp

-strcoll wcscoll

-strcpy wcscpy

-strcspn wcscspn

-strerror

-strftime wstrftime

-strlen wcslen

-strncat wcsncat

-strncmp wcsncmp

-strncpy wcsncpy

-strpbrk wcspbrk

-strrchr wcsrchr

-strspn wcsspn

-strstr wcsstr

-strtod wcstod

-strtof wcstof

Sets errno via calls to other functions.strtoimax

Strtok saves last position in string in local static variable.This function
is not reentrant by design. See (4).

strtok wcstok

Sets errno. See (2).strtol wcstol

-strtold wcstold

Sets errno. See (2).strtoul wcstoul

Sets errno. See (2).strtoull wcstoull

Sets errno via calls to other functions.strtoumax

-strxfrm wcsxfrm

N.A; skeleton functionsystem

Sets errno. See (2).tan tanf tanl

Sets errno via call to other functions.tanh tanhf tanhl

82

C-to-Hardware Compiler User Manual

Not reentrant becauseFunction

(Not implemented)tgamma tgammaf tgammal

Uses static variable which defines initial start timetime

Uses iob[]. See (1).tmpfile

Uses local buffer to build filename.
Function can be adapted to use user buffer.This makes the function
non ANSI. See (4).

tmpnam

-toascii

-tolower

-toupper

-towctrans

-towlower

-towupper

(Not implemented)trunc truncf truncl

Uses static buffer to hold unget characters for each file. Can be
moved into iob structure. See (1).

ungetc ungetwc

Calls _unlinkunlink

Uses iob[]. See (1).vfprintf vfwprintf

Calls _doscanvfscanf vfwscanf

Uses iob[]. See (1).vprintf vwprintf

Calls _doscanvscanf vwscanf

Sets errno.vsprintf vswprintf

Sets errno.vsscanf vswscanf

Sets errno.wcrtomb

Sets errno.wcsrtombs

Sets errno via calls to other functions.wcstoimax

N.A.; skeleton functionwcstombs

Sets errno via calls to other functions.wcstoumax

-wctob

N.A.; skeleton functionwctomb

-wctrans

-wctype

Calls _writewrite

Table: C library reentrancy

Several functions in the C library are not reentrant due to the following reasons:

• The iob[] structure is static. This influences all I/O functions.

83

Libraries

• The ungetc[] array is static.This array holds the characters (one for each stream) when ungetc()
is called.

• The variable errno is globally defined. Numerous functions read or modify errno

• _doprint and _doscan use static variables for e.g. character counting in strings.

• Some string functions use locally defined (static) buffers. This is prescribed by ANSI.

• malloc uses a static heap space.

The following description discusses these items into more detail. The numbers at the begin of each
paragraph relate to the number references in the table above.

(1) iob structures

The I/O part of the C library is not reentrant by design. This is mainly caused by the static declaration of
the iob[] array.The functions which use elements of this array access these elements via pointers (FILE
*).

Building a multi-process system that is created in one link-run is hard to do. The C language scoping
rules for external variables make it difficult to create a private copy of the iob[] array. Currently, the
iob[] array has external scope. Thus it is visible in every module involved in one link phase. If these
modules comprise several tasks (processes) in a system each of which should have its private copy of
iob[], it is apparent that the iob[] declaration should be changed. This requires adaptation of the
library to the multi-tasking environment.The library modules must use a process identification as an index
for determining which iob[] array to use. Thus the library is suitable for interfacing to that kernel only.

Another approach for the iob[] declaration problem is to declare the array static in one of the modules
which create a task.Thus there can be more than one iob[] array is the system without having conflicts
at link time. This brings several restrictions: Only the module that holds the declaration of the static iob[
] can use the standard file handles stdin, stdout and stderr (which are the first three entries in iob[
]). Thus all I/O for these three file handles should be located in one module.

(2) errno declaration

Several functions in the C library set the global variable errno. After completion of the function the user
program may consult this variable to see if some error occurred. Since most of the functions that set
errno already have a return type (this is the reason for using errno) it is not possible to check successful
completion via the return type.

The library routines can set errno to the values defined in errno.h. See the file errno.h for more
information.

errno can be set to ERR_FORMAT by the print and scan functions in the C library if you specify illegal
format strings.

errno will never be set to ERR_NOLONG or ERR_NOPOINT since the CHC C library supports long and
pointer conversion routines for input and output.

84

C-to-Hardware Compiler User Manual

errno can be set to ERANGE by the following functions: exp(), strtol(), strtoul() and tan().
These functions may produce results that are out of the valid range for the return type. If so, the result of
the function will be the largest representable value for that type and errno is set to ERANGE.

errno is set to EDOM by the following functions: acos(), asin(), log(), pow() and sqrt(). If the
arguments for these functions are out of their valid range (e.g. sqrt(-1)), errno is set to EDOM.

errno can be set to ERR_POS by the file positioning functions ftell(), fsetpos() and fgetpos().

(3) ungetc

Currently the ungetc buffer is static. For each file entry in the iob[] structure array, there is one character
available in the buffer to unget a character.

(4) local buffers

tmpnam() creates a temporary filename and returns a pointer to a local static buffer. This is according
to the ANSI definition. Changing this function such that it creates the name in a user specified buffer
requires another calling interface. Thus the function would be no longer portable.

strtok() scans through a string and remembers that the string and the position in the string for
subsequent calls.This function is not reentrant by design. Making it reentrant requires support of a kernel
to store the information on a per process basis.

rand() generates a sequence of random numbers. The function uses the value returned by a previous
call to generate the next value in the sequence. This function can be made reentrant by specifying the
previous random value as one of the arguments. However, then it is no longer a standard function.

(5) malloc

Malloc uses a heap space which is assigned at locate time. Thus this implementation is not reentrant.
Making a reentrant malloc requires some sort of system call to obtain free memory space on a per process
basis. This is not easy to solve within the current context of the library. This requires adaptation to a
kernel.

This paragraph on reentrancy applies to multi-process environments only. If reentrancy is required
for calling library functions from an exception handler, another approach is required. For such a
situation it is of no use to allocate e.g. multiple iob[] structures. In such a situation several
pieces of code in the library have to be declared 'atomic': this means that interrupts have to be
disabled while executing an atomic piece of code.

85

Libraries

86

C-to-Hardware Compiler User Manual

Chapter 6. MISRA-C Rules
This chapter contains an overview of the supported and unsupported MISRA C rules.

6.1. MISRA-C:1998

This section lists all supported and unsupported MISRA-C:1998 rules.

See also Section 4.8, C Code Checking: MISRA-C.

A number of MISRA-C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

x means that the rule is not supported by the C compiler. (R) is a required rule, (A) is an advisory rule.

The code shall conform to standard C, without language extensions(R)1.

Other languages should only be used with an interface standard(A)2.x

Inline assembly is only allowed in dedicated C functions(A)3.

Provision should be made for appropriate run-time checking(A)4.x

Only use characters and escape sequences defined by ISO C(R)5.

Character values shall be restricted to a subset of ISO 106460-1(R)6.x

Trigraphs shall not be used(R)7.

Multibyte characters and wide string literals shall not be used(R)8.

Comments shall not be nested(R)9.

Sections of code should not be "commented out"

In general, it is not possible to decide whether a piece of comment is C code that is
commented out, or just some pseudo code. Instead, the following heuristics are used
to detect possible C code inside a comment:

• a line ends with ';', or

• a line starts with '}', possibly preceded by white space

(A)10.

Identifiers shall not rely on significance of more than 31 characters(R)11.

The same identifier shall not be used in multiple name spaces(A)12.

Specific-length typedefs should be used instead of the basic types(A)13.

Use 'unsigned char' or 'signed char' instead of plain 'char'(R)14.

Floating-point implementations should comply with a standard(A)15.x

The bit representation of floating-point numbers shall not be used
A violation is reported when a pointer to a floating-point type is converted to a pointer
to an integer type.

(R)16.

"typedef" names shall not be reused(R)17.

87

Numeric constants should be suffixed to indicate type
A violation is reported when the value of the constant is outside the range indicated
by the suffixes, if any.

(A)18.

Octal constants (other than zero) shall not be used(R)19.

All object and function identifiers shall be declared before use(R)20.

Identifiers shall not hide identifiers in an outer scope(R)21.

Declarations should be at function scope where possible(A)22.

All declarations at file scope should be static where possible(A)23.x

Identifiers shall not have both internal and external linkage(R)24.

Identifiers with external linkage shall have exactly one definition(R)25.x

Multiple declarations for objects or functions shall be compatible(R)26.

External objects should not be declared in more than one file(A)27.x

The "register" storage class specifier should not be used(A)28.

The use of a tag shall agree with its declaration(R)29.

All automatics shall be initialized before being used
This rule is checked using worst-case assumptions. This means that violations are
reported not only for variables that are guaranteed to be uninitialized, but also for
variables that are uninitialized on some execution paths.

(R)30.

Braces shall be used in the initialization of arrays and structures(R)31.

Only the first, or all enumeration constants may be initialized(R)32.

The right hand operand of && or || shall not contain side effects(R)33.

The operands of a logical && or || shall be primary expressions(R)34.

Assignment operators shall not be used in Boolean expressions(R)35.

Logical operators should not be confused with bitwise operators(A)36.

Bitwise operations shall not be performed on signed integers(R)37.

A shift count shall be between 0 and the operand width minus 1 This violation will
only be checked when the shift count evaluates to a constant value at compile time.

(R)38.

The unary minus shall not be applied to an unsigned expression(R)39.

"sizeof" should not be used on expressions with side effects(A)40.

The implementation of integer division should be documented(A)41.x

The comma operator shall only be used in a "for" condition(R)42.

Don't use implicit conversions which may result in information loss(R)43.

Redundant explicit casts should not be used(A)44.

Type casting from any type to or from pointers shall not be used(R)45.

The value of an expression shall be evaluation order independent
This rule is checked using worst-case assumptions. This means that a violation will
be reported when a possible alias may cause the result of an expression to be
evaluation order dependent.

(R)46.

No dependency should be placed on operator precedence rules(A)47.

88

C-to-Hardware Compiler User Manual

Mixed arithmetic should use explicit casting(A)48.

Tests of a (non-Boolean) value against 0 should be made explicit(A)49.

F.P. variables shall not be tested for exact equality or inequality(R)50.

Constant unsigned integer expressions should not wrap-around(A)51.

There shall be no unreachable code(R)52.

All non-null statements shall have a side-effect(R)53.

A null statement shall only occur on a line by itself(R)54.

Labels should not be used(A)55.

The "goto" statement shall not be used(R)56.

The "continue" statement shall not be used(R)57.

The "break" statement shall not be used (except in a "switch")(R)58.

An "if" or loop body shall always be enclosed in braces(R)59.

All "if", "else if" constructs should contain a final "else"(A)60.

Every non-empty "case" clause shall be terminated with a "break"(R)61.

All "switch" statements should contain a final "default" case(R)62.

A "switch" expression should not represent a Boolean case(A)63.

Every "switch" shall have at least one "case"(R)64.

Floating-point variables shall not be used as loop counters(R)65.

A "for" should only contain expressions concerning loop control
A violation is reported when the loop initialization or loop update expression modifies
an object that is not referenced in the loop test.

(A)66.

Iterator variables should not be modified in a "for" loop(A)67.

Functions shall always be declared at file scope(R)68.

Functions with variable number of arguments shall not be used(R)69.

Functions shall not call themselves, either directly or indirectly
A violation will be reported for direct or indirect recursive function calls in the source
file being checked. Recursion via functions in other source files, or recursion via
function pointers is not detected.

(R)70.

Function prototypes shall be visible at the definition and call(R)71.

The function prototype of the declaration shall match the definition(R)72.

Identifiers shall be given for all prototype parameters or for none(R)73.

Parameter identifiers shall be identical for declaration/definition(R)74.

Every function shall have an explicit return type(R)75.

Functions with no parameters shall have a "void" parameter list(R)76.

An actual parameter type shall be compatible with the prototype(R)77.

The number of actual parameters shall match the prototype(R)78.

The values returned by "void" functions shall not be used(R)79.

Void expressions shall not be passed as function parameters(R)80.

89

MISRA-C Rules

"const" should be used for reference parameters not modified(A)81.

A function should have a single point of exit(A)82.

Every exit point shall have a "return" of the declared return type(R)83.

For "void" functions, "return" shall not have an expression(R)84.

Function calls with no parameters should have empty parentheses(A)85.

If a function returns error information, it should be tested
A violation is reported when the return value of a function is ignored.

(A)86.

#include shall only be preceded by other directives or comments(R)87.

Non-standard characters shall not occur in #include directives(R)88.

#include shall be followed by either <filename> or "filename"(R)89.

Plain macros shall only be used for constants/qualifiers/specifiers(R)90.

Macros shall not be #define'd and #undef'd within a block(R)91.

#undef should not be used(A)92.

A function should be used in preference to a function-like macro(A)93.

A function-like macro shall not be used without all arguments(R)94.

Macro arguments shall not contain pre-preprocessing directives
A violation is reported when the first token of an actual macro argument is '#'.

(R)95.

Macro definitions/parameters should be enclosed in parentheses(R)96.

Don't use undefined identifiers in pre-processing directives(A)97.

A macro definition shall contain at most one # or ## operator(R)98.

All uses of the #pragma directive shall be documented
This rule is really a documentation issue.The compiler will flag all #pragma directives
as violations.

(R)99.

"defined" shall only be used in one of the two standard forms(R)100.

Pointer arithmetic should not be used(A)101.

No more than 2 levels of pointer indirection should be used
A violation is reported when a pointer with three or more levels of indirection is
declared.

(A)102.

No relational operators between pointers to different objects
In general, checking whether two pointers point to the same object is impossible.The
compiler will only report a violation for a relational operation with incompatible pointer
types.

(R)103.

Non-constant pointers to functions shall not be used(R)104.

Functions assigned to the same pointer shall be of identical type(R)105.

Automatic address may not be assigned to a longer lived object(R)106.

The null pointer shall not be dereferenced
A violation is reported for every pointer dereference that is not guarded by a NULL
pointer test.

(R)107.

All struct/union members shall be fully specified(R)108.

90

C-to-Hardware Compiler User Manual

Overlapping variable storage shall not be used A violation is reported for every 'union'
declaration.

(R)109.

Unions shall not be used to access the sub-parts of larger types
A violation is reported for a 'union' containing a 'struct' member.

(R)110.

bit-fields shall have type "unsigned int" or "signed int"(R)111.

bit-fields of type "signed int" shall be at least 2 bits long(R)112.

All struct/union members shall be named(R)113.

Reserved and standard library names shall not be redefined(R)114.

Standard library function names shall not be reused(R)115.

Production libraries shall comply with the MISRA C restrictions(R)116.x

The validity of library function parameters shall be checked(R)117.x

Dynamic heap memory allocation shall not be used(R)118.

The error indicator "errno" shall not be used(R)119.

The macro "offsetof" shall not be used(R)120.

<locale.h> and the "setlocale" function shall not be used(R)121.

The "setjmp" and "longjmp" functions shall not be used(R)122.

The signal handling facilities of <signal.h> shall not be used(R)123.

The <stdio.h> library shall not be used in production code(R)124.

The functions atof/atoi/atol shall not be used(R)125.

The functions abort/exit/getenv/system shall not be used(R)126.

The time handling functions of library <time.h> shall not be used(R)127.

6.2. MISRA-C:2004

This section lists all supported and unsupported MISRA-C:2004 rules.

See also Section 4.8, C Code Checking: MISRA-C.

A number of MISRA-C rules leave room for interpretation. Other rules can only be checked in a limited
way. In such cases the implementation decisions and possible restrictions for these rules are listed.

x means that the rule is not supported by the C compiler. (R) is a required rule, (A) is an advisory rule.

Environment

All code shall conform to ISO 9899:1990 "Programming languages - C", amended
and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC
9899/COR2:1996.

(R)1.1

No reliance shall be placed on undefined or unspecified behavior.(R)1.2

Multiple compilers and/or languages shall only be used if there is a common defined
interface standard for object code to which the languages/compilers/assemblers
conform.

(R)1.3x

91

MISRA-C Rules

The compiler/linker shall be checked to ensure that 31 character significance and
case sensitivity are supported for external identifiers.

(R)1.4x

Floating-point implementations should comply with a defined floating-point standard.(A)1.5x

Language extensions

Assembly language shall be encapsulated and isolated.(R)2.1

Source code shall only use /* ... */ style comments.(R)2.2

The character sequence /* shall not be used within a comment.(R)2.3

Sections of code should not be "commented out". In general, it is not possible to
decide whether a piece of comment is C code that is commented out, or just some
pseudo code. Instead, the following heuristics are used to detect possible C code
inside a comment: - a line ends with ';', or - a line starts with '}', possibly preceded by
white space

(A)2.4

Documentation

All usage of implementation-defined behavior shall be documented.(R)3.1x

The character set and the corresponding encoding shall be documented.(R)3.2x

The implementation of integer division in the chosen compiler should be determined,
documented and taken into account.

(A)3.3x

All uses of the #pragma directive shall be documented and explained. This rule is
really a documentation issue. The compiler will flag all #pragma directives as
violations.

(R)3.4

The implementation-defined behavior and packing of bit-fields shall be documented
if being relied upon.

(R)3.5

All libraries used in production code shall be written to comply with the provisions of
this document, and shall have been subject to appropriate validation.

(R)3.6x

Character sets

Only those escape sequences that are defined in the ISO C standard shall be used.(R)4.1

Trigraphs shall not be used.(R)4.2

Identifiers

Identifiers (internal and external) shall not rely on the significance of more than 31
characters.

(R)5.1

Identifiers in an inner scope shall not use the same name as an identifier in an outer
scope, and therefore hide that identifier.

(R)5.2

A typedef name shall be a unique identifier.(R)5.3

A tag name shall be a unique identifier.(R)5.4

No object or function identifier with static storage duration should be reused.(A)5.5x

92

C-to-Hardware Compiler User Manual

No identifier in one name space should have the same spelling as an identifier in
another name space, with the exception of structure and union member names.

(A)5.6

No identifier name should be reused.(A)5.7x

Types

The plain char type shall be used only for storage and use of character values.(R)6.1

signed and unsigned char type shall be used only for the storage and use of
numeric values.

(R)6.2x

typedefs that indicate size and signedness should be used in place of the basic
types.

(A)6.3

bit-fields shall only be defined to be of type unsigned int or signed int.(R)6.4

bit-fields of type signed int shall be at least 2 bits long.(R)6.5

Constants

Octal constants (other than zero) and octal escape sequences shall not be used.(R)7.1

Declarations and definitions

Functions shall have prototype declarations and the prototype shall be visible at both
the function definition and call.

(R)8.1

Whenever an object or function is declared or defined, its type shall be explicitly
stated.

(R)8.2

For each function parameter the type given in the declaration and definition shall be
identical, and the return types shall also be identical.

(R)8.3

If objects or functions are declared more than once their types shall be compatible.(R)8.4

There shall be no definitions of objects or functions in a header file.(R)8.5

Functions shall be declared at file scope.(R)8.6

Objects shall be defined at block scope if they are only accessed from within a single
function.

(R)8.7

An external object or function shall be declared in one and only one file.(R)8.8x

An identifier with external linkage shall have exactly one external definition.(R)8.9x

All declarations and definitions of objects or functions at file scope shall have internal
linkage unless external linkage is required.

(R)8.10x

The static storage class specifier shall be used in definitions and declarations of
objects and functions that have internal linkage.

(R)8.11

When an array is declared with external linkage, its size shall be stated explicitly or
defined implicitly by initialization.

(R)8.12

93

MISRA-C Rules

Initialization

All automatic variables shall have been assigned a value before being used.This rule
is checked using worst-case assumptions. This means that violations are reported
not only for variables that are guaranteed to be uninitialized, but also for variables
that are uninitialized on some execution paths.

(R)9.1

Braces shall be used to indicate and match the structure in the non-zero initialization
of arrays and structures.

(R)9.2

In an enumerator list, the "=" construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

(R)9.3

Arithmetic type conversions

The value of an expression of integer type shall not be implicitly converted to a different
underlying type if:
a) it is not a conversion to a wider integer type of the same signedness, or
b) the expression is complex, or
c) the expression is not constant and is a function argument, or
d) the expression is not constant and is a return expression.

(R)10.1

The value of an expression of floating type shall not be implicitly converted to a
different type if:
a) it is not a conversion to a wider floating type, or
b) the expression is complex, or
c) the expression is a function argument, or
d) the expression is a return expression.

(R)10.2

The value of a complex expression of integer type may only be cast to a type that is
narrower and of the same signedness as the underlying type of the expression.

(R)10.3

The value of a complex expression of floating type may only be cast to a narrower
floating type.

(R)10.4

If the bitwise operators ~ and << are applied to an operand of underlying type
unsigned char or unsigned short, the result shall be immediately cast to the
underlying type of the operand.

(R)10.5

A "U" suffix shall be applied to all constants of unsigned type.(R)10.6

Pointer type conversions

Conversions shall not be performed between a pointer to a function and any type
other than an integral type.

(R)11.1

Conversions shall not be performed between a pointer to object and any type other
than an integral type, another pointer to object type or a pointer to void.

(R)11.2

A cast should not be performed between a pointer type and an integral type.(A)11.3

A cast should not be performed between a pointer to object type and a different pointer
to object type.

(A)11.4

A cast shall not be performed that removes any const or volatile qualification
from the type addressed by a pointer.

(R)11.5

94

C-to-Hardware Compiler User Manual

Expressions

Limited dependency should be placed on C's operator precedence rules in
expressions.

(A)12.1

The value of an expression shall be the same under any order of evaluation that the
standard permits. This rule is checked using worst-case assumptions. This means
that a violation will be reported when a possible alias may cause the result of an
expression to be evaluation order dependent.

(R)12.2

The sizeof operator shall not be used on expressions that contain side effects.(R)12.3

The right-hand operand of a logical && or || operator shall not contain side effects.(R)12.4

The operands of a logical && or || shall be primary-expressions.(R)12.5

The operands of logical operators (&&, || and !) should be effectively Boolean.
Expressions that are effectively Boolean should not be used as operands to operators
other than (&&, || and !).

(A)12.6

Bitwise operators shall not be applied to operands whose underlying type is signed.(R)12.7

The right-hand operand of a shift operator shall lie between zero and one less than
the width in bits of the underlying type of the left-hand operand.This violation will only
be checked when the shift count evaluates to a constant value at compile time.

(R)12.8

The unary minus operator shall not be applied to an expression whose underlying
type is unsigned.

(R)12.9

The comma operator shall not be used.(R)12.10

Evaluation of constant unsigned integer expressions should not lead to wrap-around.(A)12.11

The underlying bit representations of floating-point values shall not be used. A violation
is reported when a pointer to a floating-point type is converted to a pointer to an
integer type.

(R)12.12

The increment (++) and decrement (--) operators should not be mixed with other
operators in an expression.

(A)12.13

Control statement expressions

Assignment operators shall not be used in expressions that yield a Boolean value.(R)13.1

Tests of a value against zero should be made explicit, unless the operand is effectively
Boolean.

(A)13.2

Floating-point expressions shall not be tested for equality or inequality.(R)13.3

The controlling expression of a for statement shall not contain any objects of floating
type.

(R)13.4

The three expressions of a for statement shall be concerned only with loop control.
A violation is reported when the loop initialization or loop update expression modifies
an object that is not referenced in the loop test.

(R)13.5

Numeric variables being used within a for loop for iteration counting shall not be
modified in the body of the loop.

(R)13.6

Boolean operations whose results are invariant shall not be permitted.(R)13.7

95

MISRA-C Rules

Control flow

There shall be no unreachable code.(R)14.1

All non-null statements shall either:
a) have at least one side effect however executed, or
b) cause control flow to change.

(R)14.2

Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment provided that the first character following the null statement
is a whitespace character.

(R)14.3

The goto statement shall not be used.(R)14.4

The continue statement shall not be used.(R)14.5

For any iteration statement there shall be at most one break statement used for loop
termination.

(R)14.6

A function shall have a single point of exit at the end of the function.(R)14.7

The statement forming the body of a switch, while, do ... while or for
statement be a compound statement.

(R)14.8

An if (expression) construct shall be followed by a compound statement. The
else keyword shall be followed by either a compound statement, or another if
statement.

(R)14.9

All if ... else if constructs shall be terminated with an else clause.(R)14.10

Switch statements

A switch label shall only be used when the most closely-enclosing compound statement
is the body of a switch statement.

(R)15.1

An unconditional break statement shall terminate every non-empty switch clause.(R)15.2

The final clause of a switch statement shall be the default clause.(R)15.3

A switch expression shall not represent a value that is effectively Boolean.(R)15.4

Every switch statement shall have at least one case clause.(R)15.5

Functions

Functions shall not be defined with variable numbers of arguments.(R)16.1

Functions shall not call themselves, either directly or indirectly. A violation will be
reported for direct or indirect recursive function calls in the source file being checked.
Recursion via functions in other source files, or recursion via function pointers is not
detected.

(R)16.2

Identifiers shall be given for all of the parameters in a function prototype declaration.(R)16.3

The identifiers used in the declaration and definition of a function shall be identical.(R)16.4

Functions with no parameters shall be declared with parameter type void.(R)16.5

The number of arguments passed to a function shall match the number of parameters.(R)16.6

96

C-to-Hardware Compiler User Manual

A pointer parameter in a function prototype should be declared as pointer to const
if the pointer is not used to modify the addressed object.

(A)16.7

All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

(R)16.8

A function identifier shall only be used with either a preceding &, or with a
parenthesized parameter list, which may be empty.

(R)16.9

If a function returns error information, then that error information shall be tested. A
violation is reported when the return value of a function is ignored.

(R)16.10

Pointers and arrays

Pointer arithmetic shall only be applied to pointers that address an array or array
element.

(R)17.1x

Pointer subtraction shall only be applied to pointers that address elements of the
same array.

(R)17.2x

>, >=, <, <= shall not be applied to pointer types except where they point to the same
array. In general, checking whether two pointers point to the same object is impossible.
The compiler will only report a violation for a relational operation with incompatible
pointer types.

(R)17.3

Array indexing shall be the only allowed form of pointer arithmetic.(R)17.4

The declaration of objects should contain no more than 2 levels of pointer indirection.
A violation is reported when a pointer with three or more levels of indirection is
declared.

(A)17.5

The address of an object with automatic storage shall not be assigned to another
object that may persist after the first object has ceased to exist.

(R)17.6

Structures and unions

All structure or union types shall be complete at the end of a translation unit.(R)18.1

An object shall not be assigned to an overlapping object.(R)18.2

An area of memory shall not be reused for unrelated purposes.(R)18.3x

Unions shall not be used.(R)18.4

Preprocessing directives

#include statements in a file should only be preceded by other preprocessor
directives or comments.

(A)19.1

Non-standard characters should not occur in header file names in #include
directives.

(A)19.2

The #include directive shall be followed by either a <filename> or "filename"
sequence.

(R)19.3x

C macros shall only expand to a braced initializer, a constant, a parenthesized
expression, a type qualifier, a storage class specifier, or a do-while-zero construct.

(R)19.4

97

MISRA-C Rules

Macros shall not be #define'd or #undef'd within a block.(R)19.5

#undef shall not be used.(R)19.6

A function should be used in preference to a function-like macro.(A)19.7

A function-like macro shall not be invoked without all of its arguments.(R)19.8

Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives. A violation is reported when the first token of an actual macro argument
is '#'.

(R)19.9

In the definition of a function-like macro each instance of a parameter shall be enclosed
in parentheses unless it is used as the operand of # or ##.

(R)19.10

All macro identifiers in preprocessor directives shall be defined before use, except in
#ifdef and #ifndef preprocessor directives and the defined() operator.

(R)19.11

There shall be at most one occurrence of the # or ## preprocessor operators in a
single macro definition.

(R)19.12

The # and ## preprocessor operators should not be used.(A)19.13

The defined preprocessor operator shall only be used in one of the two standard
forms.

(R)19.14

Precautions shall be taken in order to prevent the contents of a header file being
included twice.

(R)19.15

Preprocessing directives shall be syntactically meaningful even when excluded by
the preprocessor.

(R)19.16

All #else, #elif and #endif preprocessor directives shall reside in the same file
as the #if or #ifdef directive to which they are related.

(R)19.17

Standard libraries

Reserved identifiers, macros and functions in the standard library, shall not be defined,
redefined or undefined.

(R)20.1

The names of standard library macros, objects and functions shall not be reused.(R)20.2

The validity of values passed to library functions shall be checked.(R)20.3x

Dynamic heap memory allocation shall not be used.(R)20.4

The error indicator errno shall not be used.(R)20.5

The macro offsetof, in library <stddef.h>, shall not be used.(R)20.6

The setjmp macro and the longjmp function shall not be used.(R)20.7

The signal handling facilities of <signal.h> shall not be used.(R)20.8

The input/output library <stdio.h> shall not be used in production code.(R)20.9

The library functions atof, atoi and atol from library <stdlib.h> shall not be
used.

(R)20.10

The library functions abort, exit, getenv and system from library <stdlib.h>
shall not be used.

(R)20.11

The time handling functions of library <time.h> shall not be used.(R)20.12

98

C-to-Hardware Compiler User Manual

Run-time failures

Minimization of run-time failures shall be ensured by the use of at least one of:
a) static analysis tools/techniques;
b) dynamic analysis tools/techniques;
c) explicit coding of checks to handle run-time faults.

(R)21.1x

99

MISRA-C Rules

100

C-to-Hardware Compiler User Manual

Chapter 7. Glossary
ASP Application Specific Processor. The ASP is placed as a component

(WB_ASP) on the FPGA design. This component can contain one
or more hardware functions.

CHC Compiler CHC is an acronym for C-to-Hardware Compiler; a C-to-RTL compiler
developed and distributed by Altium. In this manual, C-to-Hardware
Compiler and CHC compiler are used both.The name of this compiler
on the command line is chc.

C-to-RTL compiler
(C-to-Hardware compiler)

The term C-to-RTL compiler is commonly used to identify the class
of C compilers that translate C source code into an electronic circuit.
The output of the compiler is typically a file that describes the circuit
at the RTL level in VHDL or Verilog.

Embedded compiler The term embedded compiler is used to identify a traditional C
compiler that translates a C program into a sequence of instructions
that are executed by a microcontroller or DSP.

HASM Hardware Assembly Language. HASM is a language for describing
digital electronic circuits and is the hardware equivalent of normal
assembly language. HASM is generated by the chc compiler;
absolule HASM files are converted to VHDL or Verilog by the hdlhc
hardware language generator.

HDL In electronics, a hardware description language or HDL is any
language from a class of computer languages for formal description
of electronic circuits. It can describe the circuit's operation, its design,
and tests to verify its operation by means of simulation.

Hardware function A C function that is instantiated as an electronic circuit. In the context
of an FPGA design, also called an Application Specific Processor
(ASP). Opposite of software function.

HW-SW mode An operating mode of the C-to-Hardware Compiler where the C
source code is partially translated into an electronic circuit and
partially into an instruction sequence that is processed by a processor
core.The electronic circuit is build by the hardware compiler whereas
the instruction sequence is generated via a traditional embedded
compile-assemble-link-locate design flow.

MIL The Medium Level Intermediate Language, is a language used by
TASKING compilers to represent the source code in a format that is
suited for code generation by the compiler back-end.

RTL Register transfer level description, also called register transfer logic
is a description of a digital electronic circuit in terms of data flow
between registers, which store information between clock cycles in
a digital circuit. The RTL description specifies what and where this

101

information is stored and how it is passed through the circuit during
its operation.

Software function A C function that is executed by a processor core. Opposite of
hardware function.

Verilog Verilog is a hardware description language (HDL) used to model
electronic systems. The language (sometimes called Verilog HDL)
supports the design, testing, and implementation of analog, digital,
and mixed-signal circuits at various levels of abstraction.

VHDL VHDL or VHSIC Hardware Description Language, is commonly used
as a design-entry language for field-programmable gate arrays and
application-specific integrated circuits in electronic design automation
of digital circuits.

Wishbone Bus The Wishbone Bus is an open standard hardware computer bus
intended to let the parts of an integrated circuit communicate with
each other. The aim is to allow the connection of differing cores to
each other or to peripheral devices inside of a chip.

102

C-to-Hardware Compiler User Manual

	C-to-Hardware Compiler User Manual
	Table of Contents
	Chapter 1. Introduction
	1.1. Manual Purpose and Structure
	1.1.1. Required Knowledge to use the CHC Compiler
	1.1.2. Suggested Reading

	1.2. Introduction to C-to-Hardware Compilation
	1.2.1. Todays FPGAs
	1.2.2. CHC Programming Paradigm
	1.2.3. Benefits of the CHC Compiler
	1.2.4. What can you expect from CHC compiler?

	1.3. Toolset Overview
	1.3.1. Compiling to Hardware
	1.3.2. Hardware Assembly (HASM) and Assembling
	1.3.3. Linking & Locating
	1.3.4. HDL generation

	Chapter 2. Parallelism
	2.1. Dependencies
	2.1.1. Control Dependencies
	2.1.2. Data Dependencies
	2.1.2.1. Aliasing
	2.1.2.2. The restrict Keyword
	2.1.2.3. Loop Carried Dependencies

	2.2. The Memory System

	Chapter 3. C Language Implementation
	3.1. Data Types
	3.2. Predefined Preprocessor Macros
	3.3. Pragmas to Control the Compiler
	3.4. Function and Symbol Qualifiers
	3.4.1. Compiling to Hardware
	3.4.2. Inlining Functions: inline / __noinline

	3.5. Memory and Memory Qualifiers
	3.5.1. Introduction
	3.5.2. Storage Class Specifier: __rtl_alloc
	3.5.3. Memory Qualifier: __mem0 .. __mem9
	3.5.4. Placing a Data Object at an Absolute Address: __at()
	3.5.5. Shared Memory

	3.6. Libraries

	Chapter 4. Using the CHC Compiler
	4.1. Invocation and Operating Modes
	4.1.1. CHC Compiler Options *

	4.2. Simulating the Compiler Output
	4.3. Synthesizing the Compiler Output
	4.4. How the Compiler Searches Include Files
	4.5. How the Compiler Searches the C library
	4.6. Rebuilding the C Library
	4.7. Debugging the Generated Code
	4.8. C Code Checking: MISRA-C
	4.9. C Compiler Error Messages

	Chapter 5. Libraries
	5.1. Introduction
	5.2. Library Functions
	5.2.1. assert.h
	5.2.2. complex.h
	5.2.3. ctype.h and wctype.h
	5.2.4. errno.h
	5.2.5. fcntl.h
	5.2.6. fenv.h
	5.2.7. float.h
	5.2.8. inttypes.h and stdint.h
	5.2.9. io.h
	5.2.10. iso646.h
	5.2.11. limits.h
	5.2.12. locale.h
	5.2.13. malloc.h
	5.2.14. math.h and tgmath.h
	5.2.15. setjmp.h
	5.2.16. signal.h
	5.2.17. stdarg.h
	5.2.18. stdbool.h
	5.2.19. stddef.h
	5.2.20. stdint.h
	5.2.21. stdio.h and wchar.h
	5.2.22. stdlib.h and wchar.h
	5.2.23. string.h and wchar.h
	5.2.24. time.h and wchar.h
	5.2.25. wchar.h
	5.2.26. wctype.h

	5.3. C Library Reentrancy

	Chapter 6. MISRA-C Rules
	6.1. MISRA-C:1998
	6.2. MISRA-C:2004

	Chapter 7. Glossary

